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1. Introduction
It is impossible to look at how individuals, communities, and governments adapt, proactively and 
reactively, to climate change without looking at how uncertainty affects decision-making.  Uncertainty 
is a defining characteristic of climate change economics.  There is broad consensus that anthropogenic 
warming is occurring.  However, the obvious limitations to performing scientific experiments on the 
global climate system and its extremely complicated nature render our understanding incomplete.

As a result, there are a myriad of uncertainties individuals confront when making decisions that affect, 
or are affected by, climate change.  This survey provides a representative, though not exhaustive, 
review of those uncertainties.  It is our goal to highlight the important issues involved in climate change 
uncertainty and provide the reader with an understanding of why these issues are important and how 
they have been approached in the literature.  Additionally, the distinction between the notions of risk 
and ambiguity will prove important when analyzing climate change uncertainties.  Irreversibilities and 
fat-tailed distributions for catastrophes also complicate climate change decision-making.  After defining 
these concepts, we will look how their implications differ in the short and long terms.  Theoretical and 
practical applications of decision theory given risk and ambiguity will be surveyed.  The ultimate goal 
of this survey is to show how theories of decision-making under uncertainty can be used to help model 
adaptation and provide a framework for policy makers to address climate change and for researchers to 
analyze how individuals will make adaptation decisions in the face of an uncertain climate future.

Another important issue that is related to uncertainty and climate change economics, which is beyond 
the scope of this survey, is discounting.  Due to the permanence of  CO2 in the atmosphere, climate 
change economics must consider very long time frames, making modeling and policy 
recommendations very sensitive to the discount rate used (Heal and Kriström 2002).

2. Climate Change Uncertainty
The 2007 IPCC report on the physical science basis of climate change includes many models which 
show the wide range of temperature increase predictions. Figure 1 gives a sense for the uncertainties 
involved in climate change modeling.  Each model attempts to take what we know about the climate 
system and determine the probability that the climate will stabilize with a global mean temperature 
increase from 0-10°C.  While there is broad agreement across the models that temperature increases 
will occur, the distributions vary considerably.
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Figure 1: Probabilities of Equilibrium Temperature Increases in Sample of Different 
Climate Models1

The purpose of this section is to show just how pervasive the uncertainties involved in climate change 
are.  These uncertainties and issues can be broken down into broad categories to give a sense of how 
they might affect different decision-makers.

2.1 Environmental Uncertainties and Issues
2.1.1 Feedback Loops – Ecological and Physical Processes (IPCC 2007b)
Feedback loops arise in the global climate system when increased temperatures affect other natural 
systems which further increase temperatures (positive feedback loops) or decrease temperatures 
(negative feedback loop).  The primary feedback loops are described below.

Carbon Cycle
One important positive feedback loop is the carbon cycle, or the ability of the planet to absorb emitted 
CO2 in carbon sinks in the ocean or on land.  The absorption of carbon diminishes the temperature 
increase from a given quantity of emissions.  As more CO2 is released, the ability of the planet to 
absorb CO2 is expected to decrease.  This means that a larger proportion of emissions will remain in the 
atmosphere, resulting in a higher equilibrium level of of CO2 in the atmosphere in the future, and more 
warming.

Atlantic Ocean Meridional Overturning Circulation (MOC)
An example of a negative feedback loop (for the North Atlantic) is the predicted slowing of the Atlantic 
Ocean Meridional Overturning Circulation (MOC) due to climate change.  The result of this would be 
slower warming in the North Atlantic and Europe than would otherwise be the case as less cold air is 
circulated from the North Atlantic to warmer regions of the ocean.  Again, there is uncertainty about the 
feedback loops involved and the magnitude of the ensuing changes in ocean currents.

1 Source: IPCC 2007 Physical Science Basis – Chapter 10.  This is just a sample to show the general uncertainty in 
climate change projections.
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Clouds
The feedback effects of clouds on climate change 
are also important but not well understood. 
Clouds both reflect solar radiation back into space 
(albedo effect) and trap heat emitted from below. 
Which effect predominates, and therefore whether 
clouds result in positive or negative feedback 
loops, depends on cloud elevation, latitude, 
temperature, optical depth2, and atmospheric 
environment.  Figure 2 shows the wide range of 
estimates on the feedback effects between climate 
change and clouds.   The IPCC physical science 
report states, “cloud feedbacks remain the largest 
source of uncertainty in climate sensitivity 
estimates.” 

Methane and Permafrost Melting
According to the Stern Report as well as the 
IPCC, another positive feedback loop of uncertain 
magnitude is melting of the permafrost.3  Methane 
(a greenhouse gas) trapped in the permafrost would be released as temperature increases result in 
permafrost melting.  For example, observed methane emissions have increased by 60% in northern 
Siberia since the 1970's (Stern 2007). 

2.1.2 Thresholds and Irreversibilities (IPCC 2007b)
Another area of concern are thresholds that exist in the global climate system that once crossed result in 
irreversible changes to the climate.  The primary thresholds and irreversibilities are described below.

Sea Level Rise
Thermal expansion will result in sea level rise, though there is some uncertainty as to how far and fast 
sea levels would rise per degree increase in temperature.4 Also, melting in the Antarctic and especially 
Greenland ice sheets will determine how much sea levels rise above the levels predicted by thermal 
expansion.  Climate models suggest that if temperatures increase past a threshold of 1.9°C to 4.6°C, 
depending on the model, after 2100 and slowly over centuries, the complete melting of the Greenland 
ice sheet would result.  This would cause a 7m increase in sea levels (IPCC 2007b).  However, 
Oppenheimer, et al. (2007) suggest that the IPCC models do not include the possibility that this melting 
could happen much more rapidly.

2 Optical depth depends on the cloud's thickness, ice or water content, and the size and distribution of ice and water 
crystals.

3 Permafrost is soil whose temperature is below the freezing point of water.
4 Thermal expansion of oceans will take a considerable amount of time to occur.  The IPCC report states that “for a 

reduction to zero emissions at year 2100 the climate would take on the order of 1 kyr to stabilise. At year 3000, the 
model range for temperature increase is 1.1°C to 3.7°C and for sea level rise due to thermal expansion is 0.23 to 1.05 
m,” under Earth System Models of Intermediate Complexity.
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Figure 2: Effect of Cloud Changes on Climate 
Change in Sample of Models

Source: IPCC 2007 Physical Science Basis, Chapter 10. 
Radiative forcing (W/m2) is a measure of warming due 
to clouds.  From IPCC Chapter 2, the radiative forcing of 
all anthropogenic CO2 released in the atmosphere 
between 1750 and 2005 is less than 2 W/m2.



MOC (IPCC 2007b)
The MOC also may be subject to threshold effects.  There is considerable uncertainty as to whether the 
MOC could shut down completely or what the threshold might be.  Additionally, the question of 
whether a shutdown is irreversible is also open.

Vegetation Cover
Slight changes in temperature and precipitation can have significant effects on the ability of plants and 
animals to survive in a region.  Claussen, et al. (1999) develop a simulation model of the desertification 
of the Sahara 4000-6000 years ago as an example of how relatively small changes in environmental 
conditions can push plants past the temperature and precipitation limits under which they can survive. 
In cases where an entire ecosystem is destroyed (or species rendered extinct), these changes are 
irreversible.  Again, the exact nature and levels of these thresholds are not completely known .

CO2 Persistence in the Atmosphere (IPCC 2007b)
CO2 emissions are essentially irreversible for the following reasons.  First,  CO2 remains in the 
atmosphere for approximately 100 years.  Second,  changes to a lower emissions future will likely be 
gradual and/or costly.  Therefore, barring the development of a cheap carbon capture technology,5 any 
emissions scenario must include a long time horizon to account for the long-term effects of irreversible 
CO2 emissions.

2.1.3 Precipitation
Climate models tend to agree on the aggregate changes in precipitation with climate change.  Overall 
precipitation will increase, both over land and sea, however, in some areas, precipitation is expected to 
decrease, including Mediterranean Europe, Southern Africa, Southwest United States, Central America, 
Andean South America, and parts of Australia.  However, climate models disagree on the boundaries 
between areas that will see increased or decreased precipitation.  Additionally, the level of precipitation 
increase or decrease and the hydrological effects of precipitation and evaporation rate changes are 
uncertain.

2.1.4 Extreme Weather Events
The IPCC report (2007b) and Easterling et al. (2000) agree that extreme weather events such as 
droughts, floods, and heat waves are projected to be more common even with relatively small changes 
in mean temperature and precipitation levels.  In addition, climate change is expected to result in drier 
summers and wetter winters in the northern middle and high latitudes.  The Stern report discusses how 
the European summer of 2003, the hottest in 500 years, is an example of the extreme high temperature 
events expected to be more common in the future .  The likely future extreme weather events include 
hot days, single and multi-day heavy rains, as well as heat waves and droughts.  High temperature 
extremes are more likely to occur, with low temperature extremes less likely.

Both the IPCC And Easterling et al. indicate that the average number of category 4 and 5 hurricanes per 
year has increased over the past 30 years, and the severity of hurricanes and cyclones is expected to 
continue to increase.  The geographic range in which these storms are likely to occur will shift a few 
degrees of latitude toward the poles.  The IPCC report states that although the number of intense 
tropical storms may increase, there will be fewer tropical storms, due to a decrease in weak tropical 
storms.  However, Easterling et al. note the ability of current climate models to predict future changes 
5 While carbon capturing generally refers to removing CO2 from the emissions from large sources such as power plants, it 

can also refer to removing CO2 from the ambient air in the atmosphere. 
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in tropical storm frequency is under debate.

2.1.5 Increased Variability
The IPCC report and Easterling et. al, agree that in addition to more extreme weather events, research 
suggests that monthly precipitation will become more variable (Easterling 2000; IPCC 2007a). 
Temperature variability is expected to change as well: decreasing during the cold season in the 
Northern Hemisphere, increasing in low latitudes and in the warm season in northern mid-latitudes 
(IPCC 2007b).

2.1.6 Regional Projections
Individual responses to climate change will depend on how climate change affects the region in which 
they live and not on how it affects global means.  Therefore, predictions of climate change impacts on 
regional and local conditions are important.  Climate models generally agree on global changes, but can 
differ greatly at the regional level, according to the IPCC and a World Bank report (Margulis and 
Narain 2010; IPCC 2007; IPCC 2007b).

2.2 Economic Uncertainties
In addition to the scientific uncertainties, there are a number of uncertainties that arise as part of the 
economics of climate change.

2.2.1 Impact Uncertainty
Heal and Kriström (2002) note that even if future climate change were known, transforming 
greenhouse gas concentrations, temperatures, precipitation levels, etc. into economic impacts can be 
difficult.  For example, according to Cline's study on agricultural impacts of climate change by country, 
there is uncertainty about how much agricultural productivity will be lost (or gained in some regions) 
due to climate change (Cline 2007).

2.2.2 Technological Uncertainty
The role of technology is of central importance in climate modeling.  Existing technology determines 
the cost of emissions abatement and adaptation.  The development of future technology may be central 
to lowering future abatement and adaptation costs.  For example, if a nearly costless method for carbon 
capture were developed and implemented in the near future, anthropogenic climate change caused by 
CO2 would no longer be a problem, and emissions abatement today would be unnecessary.  However, 
understanding the cost of implementing current technologies is not straightforward.  For example, 
Fischer and Morgenstern (2006) find that estimates of the cost of reducing emissions to Kyoto Protocol 
levels varied by as much as a factor of five across different studies.  Pizer and Popp (2008) state, 
“Technological change is at once the most important and least understood feature driving the future 
cost of climate change mitigation.”

A number of studies have been conducted to model the effects of technology on future climate 
scenarios, especially on abatement costs to lower greenhouse gas emissions.  One of the main 
difficulties these studies have faced is the lack of an empirical foundation, which makes it difficult to 
know which model representation more accurately expresses the underlying reality (Jaffe, Newell, and 
Stavins 2003).  Given the open empirical questions, interpreting technological change studies is not 
always straightforward as modelers are not always transparent about what assumptions they are making 
(Pizer and Popp 2008).  Also, the type of model (for example, general equilibrium vs. partial 
equilibrium) can have a large impact on the predicted technological development and associated costs 
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(Edenhofer et al. 2006).  Another difficulty in modeling technological change in climate change is that 
technologies that do not currently exist, such as cheap carbon capture, could significantly improve the 
situation if developed.  However, how to model this set of technologies is not clear given the obvious 
absence of empirical data about them (Nordhaus 2002).  The difficulty in modeling technical change 
generates considerable uncertainty about the future costs and benefits of abatement, mitigation, and 
adaptation (Edenhofer et al. 2006).

2.2.3 Policy Uncertainty
Policy uncertainty is intertwined with technological uncertainty.  Technology and investment decisions 
are not made in a vacuum, but instead are influenced by incentives.  Present and future policy decisions 
can have a large role in determining the technologies that are developed and greenhouse gas 
concentrations in the atmosphere (Heal and Kriström 2002; Fischer and Newell 2008; Jaffe et al. 2005). 
Therefore, uncertainty about the nature and timing of future policy generates uncertainty about 
technological progress and future emission levels.  One effect of policy uncertainty is that the private 
sector may have difficulty planning investments given the policy risk involved (Sullivan and Blyth 
2006).

2.2.4 Adaptation Uncertainty
Linked to policy uncertainty is adaptation uncertainty.  When making policy decisions, government 
officials are basing those policies on the adaptation decision they are likely to induce from individuals 
and firms.  This issue is not addressed directly in the literature.  Ulph and Ulph (1997) construct a 
simple model with an adaptation parameter under climate uncertainty.  Kelly et al. (2005) model 
adaptation decisions of farmers in the Midwestern US to climate shocks under uncertainty to estimate 
their adjustment costs and adaptation decisions.  Adaptation uncertainty is also linked to impact 
uncertainty.  The impact of climate change on welfare, for example on individual wealth and health, 
depends on how individuals adapt to climate change.

2.3 Model and Parameter Uncertainty
While models provide a window to understanding the global climate system, they do not completely 
and accurately represent those systems.  Due to many of the aforementioned uncertainties, there is 
reason to be cautious in interpreting climate change models and basing policy decisions on their 
conclusions.  Uncertainties introduced by modeling can be separated into two categories, model 
uncertainty and parameter uncertainty.

Model Uncertainty
Due to the complex nature of the global climate and the economic systems involved, it is nearly 
impossible to determine which model is the correct one.  Matching possible models to historic data 
allows us to narrow the focus to ones that better match the data.  It is important to note that even if a 
model perfectly matches the data, there may be errors in the model specification that limit its ability to 
predict future events (Edenhofer et al. 2006).  In some cases, when analyzing the climate system, 
individual models are combined, given some weighting scheme, to generate multi-model projections of 
climate impacts (IPCC 2007b).  However, given that the uncertainties in the individual models may be 
unknown and unquantifiable, the uncertainties in the multi-model combination may be unquantifiable 
as well (Dessai and Hulme 2004; Hall et al. 2007).

Parameter Uncertainty
Even if the functional forms that describe the economy were known, the parameters to use in those 
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functions are still estimates that we would only be able to calibrate to their 'real' values.  For example, 
different parameters in climate models yield different results on the feedback effects between cloud 
cover and climate change.  Different parameters on risk aversion affect how much abatement should be 
done now to lower future risks (Dessai and Hulme 2004; Edenhofer et al. 2006; Heal and Kriström 
2002; Held et al. 2009; IPCC 2007; Löschel 2002).

Parameter uncertainty is also linked to model uncertainty.  When attempting to calibrate parameters to 
a model through some statistical technique, an incorrect model will generally result in apparent 
parameter uncertainty, so it may not be clear if the model is incorrect or the parameter is just difficult to 
identify from the noise in the data (Refsgaard et al. 2007).

3. Uncertainty Issues in Climate Change
3.1 Risk vs. Ambiguity
3.1.1 Risk
In most economic analysis of decisions under uncertainty, by assumption the probabilities of outcomes 
are known, or can be inferred with some confidence.  With known probabilities, expected utility 
maximization, a simple and useful decision framework, has been very widely used in economics.  For 
simplicity, in discrete terms, with n possible outcomes x= x1, x2,... xn , where each outcome has a 
probability p i  of occurring, and given some utility function u , expected utility of x  is:

U x =∑
i=1

n

pi u x i  (1)

Expected utility is weighted average of the utility in each possible state, with the probability of ending 
up in that state as the weight.  In a simple example, suppose you were drawing balls from an urn which 
contains 50 red balls and 50 black balls.6  If you draw a red ball, you receive $100, and if you draw a 
black ball you receive $0.  After normalizing u $0=0 , your expected utility would be:

U xurn=pred u xred pblack u xblack=0.5 u1000.5u 0=0.5u 100  (2)

Now suppose that to draw a ball (and have the possibility of earning $100), you had to wager $50.  In 
expected value terms, drawing from the urn is worth $50.7  If you prefer keeping the $50, to an 
uncertain wager with an expected value of $50, you are considered risk averse (Pratt 1964).  Using the 
notation above, this can be expressed:

u 500.5u 100  (3)

This framework has been extremely useful, with applications in many areas, including insurance and 
financial markets.   The intuition behind risk aversion is that there are diminishing returns to getting 
more income.  Individuals get more happiness out of their first $100 than out of the $100 that raises 
their income to $100,000 (by say, avoiding starvation with the first $100, as opposed to buying slightly 
better food at $100,000).

However, this analysis depends critically on the assumption that the probabilities of the different 

6 This example and the discussion on ambiguity is a simplified version from Ellsberg's seminal paper on risk and 
ambiguity.

7 EV x urn= p red xred pblack x black=0.5 100 0.5 0=50
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outcomes are known, or can be estimated reasonably (Ellsberg 1961).  In this framework, risk 
represents uncertainty over which outcome will be realized given the probability that each outcome will 
occur.

3.1.2 Ambiguity
Now consider the same situation: an urn with 100 balls, either red or black.  However, this time you do 
not know how many are red and how many are black.  Additionally, you have no reason to believe that 
any distribution of balls is any more likely than any other.  Any possible distribution from 100 black 
balls and 0 red ones to 0 black balls and 100 red ones is possible, and you have no way of 
distinguishing which one is more likely.  Now the decision to make the $50 wager is a different one.  If, 
in the absence of better information, you assume all possibilities are equally likely, the problem reduces 
to the one above, and your decision would depend on your risk aversion as before.8

However, in the absence of any information about the balls, some decision-makers may prefer to be 
more  cautious.  Some risk-loving people who would have bet in the previous case would choose not to 
wager in the ambiguous case (Ellsberg 1961).  In this case, the person can be considered ambiguity  
averse as opposed to risk averse.  It is the ambiguity, defined as uncertainty about the probabilities  
themselves, that prevents this person from placing the wager.  This notion of ambiguity has also been 
called deep or Knightian uncertainty.  The term ambiguity was chosen here because it represents a more 
general notion of uncertainty about probabilities.  In deep or Knightian uncertainty, the probability 
distributions are unknown whereas ambiguity, as used in decision theory, better encapsulates the idea 
that we may or may not have some information about the probabilities distributions, and only in the 
extreme are completely ignorant of them.

In the previous case, the person chose not to place the wager because of the risk, or uncertainty about  
the outcome that will be realized given those probabilities.  Ambiguity aversion means that an 
individual prefers a situation with clear probabilities to those ones with uncertain probabilities (even if 
expected utility were the same in both cases) (Camerer and Weber 1992).

In this stylized example, the difference between risk and ambiguity is clear.  This example is an 
extreme case of complete ambiguity, where there is no information about the probabilities involved. 
However, different degrees of ambiguity can exist, where the decision-maker has some knowledge or 
confidence about the likelihood of different probability distributions.

Ambiguity Attitude in Empirical Studies
After the Ellsberg paper, a number of experimental studies were done to test ambiguity aversion. 
Camerer and Weber (1992) conducted a comprehensive survey of prior experiments.  They concluded 
that individuals are willing to pay a premium of 10-20% on average to avoid ambiguity .  Not all 
participants in these studies were ambiguity averse, and differences in experimental design and the 
stakes involved make comparisons across studies difficult.  They also note that ambiguity loving 
behavior was common given a high probability for losses and a low probability for gains.  Also, 
Camerer and Weber note that the correlation between ambiguity and risk aversion appears low, 
however, due to problems with study designs and implementation, they are not convinced by this result.

More empirical work has expanded on Camerer and Weber's findings.  Bossaerts, et al. (2010) conduct 

8 By the reduction of compound lotteries, this problem reduces to the risk problem with 50 red balls and 50 black balls.
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an experiment on portfolio choice in asset markets and find heterogeneity of ambiguity attitudes and 
that ambiguity neutrality and ambiguity aversion are most common.  Additionally, their data suggests a 
positive correlation between risk aversion and ambiguity aversion.  Halevy (2007) conducted an 
Ellsburg-type experiment to assess the performance of different decision-theoretic frameworks.  He 
found that 15-20% of subjects were ambiguity neutral and that the majority of the remaining 
participants exhibited ambiguity aversion.  He also found considerable heterogeneity in individual 
attitudes toward (and processing of) ambiguity.  Ahn et al. (2009) conduct a portfolio experiment to test 
ambiguity aversion models.  They also find considerable heterogeneity in the experimental population 
and a large percentage of individuals who show ambiguity aversion.  Chakravarty and Roy (2008) 
conduct an experiment to test whether ambiguity aversion behavior is affected by whether individuals 
are likely to experience losses or gains.  They found that individuals were more risk averse over gains 
and more risk and ambiguity seeking in losses.  However, aversion to both risk and ambiguity is the 
most common trait.  Budescu and Templin (2008) and Di Mauro and Maffioletti (2004) found that 
decision-makers were ambiguity loving in gains and ambiguity averse over losses.  Cabantous (2007) 
surveyed actuaries on insurance pricing and found that ambiguity was more costly to insure than risk.

Many of the studies since Camerer and Weber in 1992 seek to explain some aspect of ambiguity 
aversion rather than testing directly for its presence.  Due to their different experimental 
methodologies, the results of these studies cannot always be compared.  However, they agree with 
earlier studies that there is considerable heterogeneity of ambiguity attitude in the population.  It should 
be noted that considerable heterogeneity has also been observed in risk aversion (Choi et al. 2007). 
Also, many studies suggest that ambiguity attitudes are not symmetric across gains and losses.

3.2 Fat-Tailed Distributions
Weitzman (2009a) considers the problem of a “fat-tailed” distribution of losses and gains, where a fat 
tail “assigns a relatively much higher probability to rare events in the extreme tails than does a thin-
tail.”  The idea is that a fat-tailed distribution has a much higher (though still low) probability of 
catastrophic events.  Weitzman argues that if the costs of a catastrophe are sufficiently great and the 
probability of one occurring is not sufficiently small, expected utility and cost benefit analysis are not 
capable of informing our decisions about managing the risks.  During a catastrophe, marginal utility 
becomes extremely high.9  If marginal utility in increasingly catastrophic outcomes increases faster 
than their probabilities decrease given fat tails, the possibility of a catastrophe dwarfs all other 
considerations in expected utility/cost-benefit analysis (Aldy et al. 2009).  In this case, decision-makers 
should take extremely strong actions (if possible) to lower the probability of a catastrophe.  For 
example, if climate change has catastrophic consequences, this could justify drastically cutting back on 
or eliminating CO2 emissions.

This analysis depends on events being sufficiently catastrophic.  Weitzman mentions the possibility of a 
climate change causing damages of 99% of current welfare-equivalent consumption.  To put that into 
perspective, China's per capita GDP in 1978 is about equal to 1% of current US GDP per capita.10  Aldy 
et al. (2009) cite studies which place damages, even in extreme scenarios, at under 3% of consumption. 
If catastrophes are not sufficiently catastrophic (far more so than 3% of consumption), then fat-tails 
concerns would not invalidate expected utility analysis.  Another argument against Weitzman's fat-tail 

9 Extremely high marginal utility under starvation (Weitzman's example) can be understood by considering that people 
would forgo almost everything today to avoid mass starvation tomorrow.

10 Source: World Bank World Development Indicators.  GDP measured at PPP.  1978 per capita Chinese GDP is 1.2% of 
2008 per capita US GDP.
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argument is that if learning allowed us to discover we were on a course toward a catastrophic outcome, 
we could cut emissions drastically then, assuming no catastrophe threshold had been crossed and such 
learning were possible (Aldy et al. 2009).

Weitzman (2009b) counters that modeling results are sensitive to the damage function11 chosen, and 
that as a result, fat-tailed considerations cannot be ruled out.  He also notes that due to the permanence 
of CO2 emissions in the atmosphere, mid-course corrections may not be possible because “by the time 
we learn that a climate-change disaster is impending it may be too late to do much about it.”

Therefore, even if damages were low enough to allow for the use of expected utility, given the 
uncertainties involved, decision-makers must incorporate fat-tail uncertainty over catastrophic 
situations into their analyses (Nordhaus 2009).

3.3 Option Value/Irreversibilities
Two linked issues also arise in the economics of climate change, the irreversibility of some damages, 
which have been enumerated above, and the option value of future emissions.  Given irreversible CO2 

emissions, if we choose not to pollute now, we are preserving the “option” to pollute later. 
Paraphrasing Arrow and Fisher's (1974) seminal paper on irreversibility in environmental economics: 
given an ability to learn from experience, under-pollution can be remedied in the future (by increasing 
production and pollution) if we learn that climate change is less harmful or easier to mitigate than we 
thought, whereas mistaken over-pollution cannot be remedied, and the consequences of over-pollution 
will persist irreversibly.  In this way, emissions abatement now preserves the option value of future 
pollution.  An important additional consideration is that this option value is only present given 
uncertainty and irreversibility.  If emissions are reversible (for example, given carbon capture 
technology), then pollution today can be removed returning us to low greenhouse gas concentrations. 
If there is little cost to removing greenhouse gases from the atmosphere, there is little value to paying 
now to pollute less and preserve the option of polluting more in the future.  Additionally, without 
uncertainty, the optimal pollution path can be determined beforehand given the known irreversible 
threshold, and there is no option value to delaying pollution, just the normal tradeoff between the 
marginal benefits and costs of present vs. future emissions (Pindyck 2007).

Just as with fat tails, learning is extremely important when considering option values given uncertain 
irreversibilities.  For example, with slow or no learning, there is a risk that irreversible thresholds will 
be crossed without decision-makers being aware of it (Aldy et al. 2009).  Pindyck also highlights the 
flip side of irreversibility in climate change.  Cutting emissions now to preserve the option of future 
pollution can be costly (for example, given high costs of transitioning to alternative energy sources). 
This leads to an option value to polluting and waiting to see if it is necessary to incur the costly and 
irreversible investments in abatement.

A number of studies have been done to assess how irreversibilities affect climate change decisions, 
though with mixed prescriptions, which depend on modeling assumptions.  In some models, investment 
irreversibilities dominate emissions irreversibilities, and the optimal emissions path is to pollute more 
now and invest in abatement in the future (Fisher and Narain 2003; Keller et al. 2004; Ulph and Ulph 
1997; Heal and Kriström 2002).  Gollier and Treich (2003) construct a model that suggests the 
opposite, that precautionary emissions reductions should be adopted to preserve the option of future 

11 A function of the damage caused by temperature increases.
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pollution.  Baker (2005) shows that assumptions about risk and learning are crucial in determining how 
emissions levels should be set over time.  One issue that these studies ignore is the ability of firms and 
individuals to adapt to climate change, which should affect policy makers' decision on abatement costs. 
Ingham et al. (2007)construct a simple model with adaptation to show that given learning and 
uncertainty, adaptation decreases the amount of mitigation and abatement we should engage in today.

Irreversibilities also affect adaptation decision-making, as many adaptations require upfront 
investments.  For example, given the irreversible fixed cost of investing in irrigation, there may be an 
option value to waiting to see how exactly local conditions are affected by climate change before 
investing in a new irrigation system.  Switching crops could also entail an upfront investment in 
acquiring crop-specific knowledge.  This could affect the timing of adaptation decisions under 
ambiguity.

3.4 Unknown Unknowns
In addition to the preceding discussion of uncertainty as risk or ambiguity, the long time frames 
involved and the our imperfect knowledge of the world climate system and future economic and 
technological development result in “unknown unknowns.”  With unknown unknowns,  “we find 
ourselves in total ignorance, unable to even know what uncertainty exists” (Baroang, Hellmuth, and 
Block 2009).  In the case of unknown unknowns, the outcome space itself may be unknowns or there 
may be no way of assigning likelihoods to outcomes or probability distributions.  The IPCC also 
highlights the difficulty of modeling given unknown unknowns.  They note that in the context of 
structural modeling choices, these concerns can be “attenuated when convergent results are obtained 
from a variety of different models using different methods, and also when results rely more on direct 
observations (data) rather than on calculations” (Halsnæs et al. 2007).

4. Uncertainty in Climate Change
The distinction between risk and ambiguity is important in the discussion of climate change.  When 
attempting to design policy or model individual decision-making in climate change economics, those 
policies and decisions must be conditioned on the inherent uncertainties involved.  

Long vs Short Term
Depending on the time frame and scope, different uncertainties are relevant to the decision-making 
process.  When looking at ambiguous information, fat-tailed distributions, or irreversibilities, the time 
frame of the decision is crucially important.

Long-Term
Long-term decisions are those that are have high fixed costs and are difficult to change or reverse. 
Infrastructure investments, including roads, electrical infrastructure (power plants, transmission lines), 
water and sewer systems, etc. clearly qualify as long-term decisions.  These investments require 
planners to account for both risk and ambiguity in climate change predictions.  Private individuals 
make long-term decisions on investments, such as real estate and capital investment or migration 
decisions.

An illustrative example of a long-term public infrastructure decision would be the design of dikes or 
levies to protect coastal or river areas from flooding due to extreme weather events or sea level rise.  It 
may be necessary to account for the ambiguity inherent in climate change by including flexibility or 
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some additional safety margin to account for the fact that future water levels may be very different than 
they are expected to be.  An example of this was a plan put forth for the dike system in the Netherlands. 
Rather than building dikes with a safety margin only adequate to handle the risk of sea level rise in the 
likely scenarios, a more flexible option was proposed.  This entailed building dikes to the height 
necessary given the expected risk and also including a stronger foundation that allows a larger dike to 
be built much more quickly and easily in the case of a larger than expected sea level rise.  This type of 
planning would result in higher cost now, but greater resilience of the dike in case the Greenland and 
Antarctic ice sheets melt much faster than expected.  Figure 3 is adapted from a figure in a study on 
adaptation to climate change in the Netherlands (Dessai and Van Der Sluijs 2007).  This example shows 
how both risk and ambiguity can be incorporated into long-term decision-making.

Figure 3: Flexible Dike Design to Address Ambiguity of Sea Level Rise

Policy uncertainty also plays a role long-term decision-making.  When planning long-term investments, 
such as electrical infrastructure, companies must account for the risk of higher emissions prices, which 
depends in part on future government policy decisions.  For example, large uncertainties could lead 
utility companies to delay investments in new plants leading to higher emissions than would have 
otherwise been the case (Sullivan and Blyth 2006).  In this case the the uncertainty is over future 
government action.  This uncertainty would be considered risk if companies believe they can 
reasonably assign probabilities to future policy outcomes.  However, if the uncertainty is great enough, 
it may be impossible to do so; in which case, this would be an example of ambiguity.

Short-Term
Short-term decisions are those that can be changed easily or at low cost or whose effect disappears over 
the long-term.  A farmer deciding which crop to plant this year would be an example of a short-term 
decision, as it can be revisited again each year.  For short-term decisions, risk uncertainty may be more 
important than ambiguity.  When deciding which crop to plant, a farmer can generally ignore the 
ambiguity in temperature and precipitation patterns 20 years from now.  For these types of decisions, 
the long-term ambiguity of climate change is less relevant.  Instead, the current variability of climate is 
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the important risk factor.  While over long periods, the probability distribution governing droughts, 
extreme weather events, floods, etc. are likely to change significantly, the probabilities in any one year 
are unlikely to differ significantly from the year before.

In addition, it may be possible to insure against the short-term risks.  Weather index insurance has the 
potential to help farmers hedge against the risk inherent in increased weather variability.  The principle 
of index insurance is that insurance payments are made based on some independent measure that is 
correlated with outcomes but not under the control of individual policy holders.  For example, weather 
conditions are correlated with farm yield, but are outside the control of farmers (Skees, Barnett, and 
Hartell 2005). 

An important advantage when considering insurance is that it gives a clear price signal to farmers about 
the expected climate risk.  Price signals could alert farmers to the need to consider alternative 
agricultural strategies or even abandon agriculture for other economic activities.  However, there are 
limitations to the applicability of index insurance, especially given the ambiguity over changes to 
regional climates.  When the variance, and especially, the mean of weather conditions is unknown due 
to climate ambiguity, it may be difficult to accurately price insurance (Skees, Barnett, and Collier 
2008).

Many of the major ambiguities inherent in climate change, such as the feedback loops, irreversibilities, 
and economic uncertainties are uncertainties that primarily affect long-term decision-making. 
Additionally, as available data, climate science, and modeling improve, precipitation changes, weather 
variability, extreme events, and regional variations in climate change will all be subject to less 
ambiguity in the short term.

5. Theories of Decision-Making under Uncertainty
There is a considerable literature on decision-making under uncertainty.  This survey does not attempt 
to provide a comprehensive review of this literature.  Instead, the goal is to provide a summary of some 
of the most important theoretical developments.  Also, as the goal is to use these decision theories to 
model how individuals make decisions in the face of climate change, we will also try to address how 
these theories can be applied as well as some possible hurdles to doing so.

5.1 Expected Utility / Subjective Expected Utility 
The basic expected utility model was explained in Section 3.  The major shortcoming of this model in 
the context of climate change is the requirement of a known probability distribution.  One way to 
incorporate imperfect knowledge of probabilities into the expected utility is to include subjective 
probabilities, or the decision-maker's prior judgment about the likelihood of different outcomes.  In this 
framework, the subjective probabilities are updated as new information comes to light.   In cases where 
the probabilities are known or where the extreme risks are bounded or reasonably well understood, the 
expected utility or subjective expected utility models provide an excellent framework for analysis.

Expected Utility in Climate Decision-Making
In climate change, much of the uncertainty is ambiguity and choosing a prior distribution is both 
arbitrary and extremely important for the results of economic models.  The existence of low (but 
unknown) probability, high cost events (the melting of the Greenland ice sheets or warming of more 
than 10°C) do not lend themselves well to expected utility analysis given the tremendous uncertainty 
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about their probabilities (Shaw and Woodward 2008).  The main criticism of standard expected utility 
is that in a problem with ambiguity, the model does not accurately predict how people make decisions. 
The Ellsberg paradox (1961), which has been demonstrated in repeated experiments, violates expected 
utility theory and shows that people generally exhibit ambiguity aversion (Camerer and Weber 1992). 
The applied literature on ambiguity attitude in the population was discussed in Section 3.1.2.

5.2 Precautionary Principle (PP)
The need to include ambiguity aversion in decision-making has been recognized in policy-making 
circles for decades.  In this context, ambiguity aversion has been referred to as the Precautionary 
Principle (PP).  There have been numerous definitions of the PP, and it has been included in many areas 
of environmental regulation and policy (for example, in the Second World Climate Conference in 1992)
(Harding and Fisher 1999).  While some formulations are stronger than others, most definitions of the 
PP state that precaution should be taken in choosing a course of action given that there is uncertainty 
about the level of damage that will be caused.  One characterization states that the PP should entail a 
“willingness to take action in advance of scientific proof, or in the face of fundamental ignorance of 
possible consequences, on the grounds that further delay or thoughtless action could ultimately prove 
far more costly than the ‘sacrifice’ of not carrying on right now” (O'Riordan and Jordan 1995).  Thus 
the PP can be thought of as similar to an option value of not taking a possibly environmentally costly 
course of action.  However, the PP is too vague to in itself guide policy.  Gollier and Treich (2003) even 
go so far as to say, “the common formulation of the [Precautionary Principle] has no practical content 
and offers little guidance for conceiving regulatory policies.”  In order for the PP to be useful as a 
decision criterion, a formal definition is needed (Basili, Chateauneuf, and Fontini 2008).  

Therefore, to incorporate the PP into decision-making, the expected utility framework can be extended 
to include ambiguity aversion.  This can be achieved with the inclusion of subjective probabilities and 
non-additive (nonlinear) expected utility.   Allowing utility to follow a form other than the function in 
Section 3 complicates the theory, but also allows decision theory to be applied to more types of 
problems (Gilboa 1987; Schmeidler 1989).  The inclusion of ambiguity aversion has the added benefit 
of more accurately representing how people actually make choices as ambiguity aversion has been 
shown to be important in decision-making (Camerer and Weber 1992).

5.3 General Ambiguity Aversion Theories
5.3.1 Maximin Expected Utility and Choquet Expected Utility (MEU and CEU)
Two formal models of decision-making with ambiguity aversion are Maximin Expected Utility (MEU) 
and Choquet Expected Utility (CEU).  In both, there are multiple possible probability distributions, and 
there is ambiguity about which probability distribution is valid.  For example, each climate model 
could represent a possible probability distribution.  In these models, the decision-maker exercises 
extreme caution and chooses a policy that maximizes their utility in the worst case that they consider 
possible given the ambiguity.  The name maximin comes from the maximization of the minimum utility 
(Schmeidler 1989; Gilboa and Schmeidler 1989).

An example may help explain these models given an ambiguity averse decision-maker.  Assume there 
are three possible climate models, A , B , and C .   I believe A  has a 75% chance of being the correct 
model, and I believe there is a 25% chance that either B  or C  is correct.  But due to ambiguity, I 
cannot divide the 25% probability that either model is correct and assign it to models B  and C .  This 
situation is summarized in Table 1.  It is clear from the table that this represents non-additive 
probability, as 0%=P (B)+P(C )≠P(B  or C )=25% .  This non-additivity is what separates CEU 
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and MEU from subjective expected utility.  The decision-maker does not have enough information to 
assign a probability to all possible models, and therefore does not.  In subjective expected utility, it 
would likely be assumed that each model had a 12.5% chance of being correct, in a sense, ignoring the 
ambiguity.

Table 1: Example of MEU/CEU
Probabilities Utilities

P( A ) 75% U( A ) 2
P( B ) 0%* U( B ) 1
P( C ) 0%* U( C ) 3
P( A  or B ) 75% (Due to ambiguity of B , same as P( A ))
P( A  or C ) 75% (Due to ambiguity of C , same as P( A ))
P( B  or C ) 25%
P( A , B , or C ) 100% (encompasses all possible outcomes)
* P( B ) and P( C ) are perceived as 0% due to the decision-maker's inability to assign a precise probability to  
the likelihood of the outcome occurring.

Expected Utility
When calculating utility in this case, the ambiguity averse decision-maker assumes the worst for 
ambiguous possibilities so expected utility is:

EU=P (A)U (A)+P (B  or C )min {U (B) , U (C)}=0.75∗2+0.25∗1=1.75

By always assuming the worst given ambiguous information, the ambiguity averse decision-maker 
therefore exercises extreme caution (Mukerji 1997).12

MEU/CEU in Climate Decision-Making
In discrete terms, for simplicity, assume there are m  climate models13, each with n  possible climate 
outcomes.  Let Y  represent the set of policies being analyzed, where y  is an individual policy.  In 
each model j ,  p i , j( y )  is the probability that outcome i  will occur given policy y .  For example, 
given a specific tax on carbon emissions as the policy y , in model 3, outcome 4 is that the temperature 
will rise 3°C with a probability of 20%, then p4,3( y )=0.2 .  Each x i , j( y )  is the payoff (for example in 
income), under outcome i  in model j  for policy y , and u ( xi , j ( y))  is the utility given payoff 
x i , j( y ) .

We will make a simplifying assumption about the distinction between ambiguity and risk.  There is 
complete ambiguity about which model is correct.  However, if a given model is correct, the 

12 This example is a simplification of one provided in Mukerji's paper.  It is not meant to completely characterize CEU or 
MEU preferences, but to give an intuitive sense for how they work.

13 The m  models could also include combinations of different models and parameterizations of different models to reflect 
the model and parameter uncertainty mentioned previously.
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probabilities are known for each possible outcome, the uncertainty within the model is only risk 
uncertainty.  For model j , the expected utility of policy y  is:

EU j( y )=∑
i=1

n

p i , j( y )u( x i , j( y ))  (4)

For each set of policies y , MEU would be represented as:

max
y∈Y

EU ( y )=min (EU 1( y ) , ... , EU m( y ))  (5)

To apply MEU to public policy, each policy option would be evaluated by determining the welfare 
under the climate model with the lowest expected utility given that policy.  Then, the decision-maker 
would choose the policy that was least bad in its worst case.  Therefore, MEU preferences represent an 
extreme form of the PP.

While there may be cases where MEU decision criteria should be used, it seems overcautious to 
incorporate only the worst-case scenario into a decision-making process (Quiggin 2005). However, 
given the ambiguity involved in climate change, some form of ambiguity aversion does seem 
appropriate.  The MEU and standard expected utility frameworks provide bounds on the ambiguity 
aversion.  The MEU decision-maker exhibits complete aversion to ambiguity and the expected utility 
decision-maker shows no ambiguity aversion.  

A more flexible approach is needed to address ambiguity aversion and model climate change decisions. 
Several models have been proposed to provide a framework for decision-making under ambiguity, 
including models using α-Maxmin Expected Utility (Ghirardato, Maccheroni, and Marinacci 2004), 
Smooth Ambiguity (Klibanoff, Marinacci, and Mukerji 2005), Multiplier Preferences (Hansen and 
Sargent 2001), and Case-Based Decision Theory (Gilboa and Schmeidler 1995; Guerdjikova 2008). 
All of these theoretical models use mathematical axioms to define what they mean by ambiguity and 
ambiguity aversion.  However, because they are all theoretical, they may not all be easy to incorporate 
into climate change decision-making.

5.3.2  α-Maxmin Expected Utility (α-MEU)
The α-MEU  model is very similar to the MEU model with a slight changes to generalize MEU to 
allow for differing levels of ambiguity aversion.  The α-MEU includes a parameter   that represents 
the decision maker's ambiguity aversion.  The value of   is between 0 and 1, and it does not depend 
on the distribution of possible outcomes.  Maximizing expected utility in α-MEU could be represented 
discretely as:

max
y∈Y

EU ( y )=αmin (EU 1( y) ,... ,EU m( y))+(1−α )max (EU 1( y) ,... , EU m( y))  (6)

where max (EU 1( y) ,... , EU m( y))  represents the expected utility of the model with the highest 
expected utility.

Together, the best and worst possible models provide bounds on what the decision-maker can expect 
because the “true” expected utility must by definition be between the best and worst possible cases. 
When =1 , the decision-maker is completely ambiguity averse and assumes the worst (and the 
formula reduces to MEU).  If =0 , the decision-maker is completely ambiguity loving and assumes 
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the best.  In this way, different   represent different levels of ambiguity aversion.14

α-MEU in Climate Decision-Making
Hayashi and Wada (2008) highlight an important limitation of the α-MEU model.  A decision maker in 
the α-MEU focuses only on the best and worst outcomes and ignores all information about other 
possible outcomes.  They conducted an experiment to compare different ambiguity-based decision 
theories and found that subjects care about more than just the best and worst cases when making 
decisions.  In climate change decision-making, it seems reasonable to include these non-extreme future 
scenarios as well as the best and worst possible outcomes.  For example, if new information came to 
light that rendered “good” climate models more likely, but did not affect the best or worst case models, 
under α-MEU models our decisions would be unchanged as we ignore merely “good” models,  because 
they are neither the best nor the worst case.

5.3.3 Smooth Ambiguity
Klibanoff, Marinacci, and Mukerji (2005) develop an ambiguity framework that is very similar to 
standard expected utility over risk.  For this purpose we would define a function   which converts the 
expected utilities of each possible probability distribution into an ambiguity-sensitive utility when 
summed over all possible probability distributions.  This is a direct analog of how the utility function 
u  in standard utility theory converts the utility of each possible outcome (given a probability 
distribution) into risk-sensitive-utility.  q j  can be defined as the likelihood that that probability 
distribution is the correct one.

Smooth Ambiguity in Climate Decision-Making
In terms of climate change, as before, assume there are m  climate models, each with n  possible 
climate outcomes.  Depending on how likely we believe a particular model is correct, we assign it a 
probability   q j .  The Smooth Ambiguity model in this case is:

max
y∈Y

EU ( y )=∑
j=1

m

q jϕ (EU j( y))  (7)

This model has the advantage of maintaining the same intuition that generates risk aversion in standard 
expected utility models.  This model also provides a more simple way to compare and test how 
individuals make decisions under ambiguity.  In this way, it provides a framework for determining 
plausible functions for  , which could then be incorporated into an applied decision-making 
framework to guide policy choices when faced with ambiguity.  The specification of   can be done 
much as risk aversion is specified.  For example, a constant absolute ambiguity attitude could be 

represented by any positive affine transformation of x=
−1


e− x .

Epstein (2010) uses several thought experiments that extend Ellsberg's urn example to critique Smooth 
Ambiguity's applicability to some decision problems.   Klibanoff, Marinacci, and Mukerji (2009a) 
counter that Smooth Ambiguity performs reasonably well, and that all economic models, by their very 
definition, are simplifications which allow economists to focus on the relevant issues while not 
necessarily encompassing all possible scenarios.

14 If there is no ambiguity, for any α , the problem reduces to the standard expected utility case, because the best and 
worst possible models are the same.  The “true” model is known and is therefore also the best and worst possible one.
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By extending the intuition used in standard expected utility under risk, Smooth Ambiguity provides a 
clear and more simple framework to analyze decision-making under ambiguity at the cost of possibly 
not accurately encompassing how people make decisions under uncertainty in all circumstances.

5.3.4 Robust Control/Multiplier Preferences
The Multiplier Preferences framework was developed for use in macroeconomic and financial 
decision-making under uncertainty.   This model uses the notion of relative entropy15 as a measure of 
the perceived ambiguity.  The entropy measures the decision-maker's confidence in the accuracy of his 
prior probability distribution (his model, for example) as opposed to the other possible probability 
distributions.  This model was specifically developed to handle problems where decision-makers were 
facing ambiguity due to parameter or model uncertainty (Hansen and Sargent 2001).

A simple form of Robust Control is, where w  represents model uncertainty and   represents the 
decision-maker's sensitivity to ambiguity (large   indicates low sensitivity).  As a thought experiment, 
imagine a malevolent nature that chooses w  to minimize the decision-maker's utility.  There is a 
penalty to nature to increasing ambiguity (in this example w2 ).  Nature minimizes the expected utility 
of the decision-maker subject to this penalty:

U x =min
w {∑i=1

n

pi u x i , ww2}  (8)

Therefore with larger  , the penalty to nature's introduction of ambiguity is greater, which leads to 
smaller optimal values for w .  An entropy constraint is imposed on the model, which determines 
which specifications are ignored by the decision-maker as being too implausible, and the remaining 
possibilities are considered indistinguishable from the correct model.  Similarly to MEU preferences, 
the agent considers the range of “plausible” models given the entropy constraint, and maximizes his 
utility subject to the worst possible model (Backus, Routledge, and Zin 2004).  Hennlock (2009) 
phrases the robust control problem as one where “a hypothetical minimizer that resides in the head of 
our household making her to think ‘what if the worst about climate sensitivity turns out to be true.’”

Robust Control/Multiplier Preferences in Climate Decision-Making
One weakness of Multiplier Preferences is that the model is not based on observed decision-making 
behavior (Maccheroni et al. 2006).  Multiplier preferences also suffer from the weakness of MEU and 
α-MEU in focusing on the extreme cases and maximizing utility under those circumstances without 
considering the non-extreme possibilities. Hennlock (2009) uses a two-period Integrated Assessment 
Model with Robust Control to analyze how ambiguity aversion affects carbon emissions decisions.  He 
finds that ambiguity aversion results in a “shadow ambiguity premium” on carbon emissions.

5.3.5 Case-Based Decision Theory (CBDT)
Case-Based Decision Theory (CBDT) accounts for the fact that individuals make decisions based on 
the success of actions under similar circumstances in the past.  In this model, the decision-maker faces 
uncertainty and the past circumstances the decision-maker has faced provide some, but imperfect, 
information about the likely outcome of different outcomes in the current situation.  The decision-
maker uses a “similarity” function to assess how similar past circumstances are to the current situation 

15 Relative entropy is a measure of the difference between probability distributions.
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and perceives ambiguity when those past events are not similar enough to the current one (Gilboa et al. 
2002).  Gilboa et al. (2006) also consider statistical methods for estimating similarity functions based 
on empirical data.

CBDT in Climate Decision-Making
In the context of climate change, CBDT can be applied to models individual decision-making as 
optimal policy exercises.  For example, in the context of policy-making under adaptation uncertainty, 
CBDT models may provide insights into how an autonomously-responding agent assimilates and 
applies information from past experiences to current problems, for example, how farmers use past 
weather and precipitation conditions to inform their planting decisions as climate change progresses. 
Modeling adaptation decisions could help policy-makers reduce adaptation uncertainty when making 
decisions.

5.4 Learning and Dynamic Modeling of Ambiguity Aversion
The next step to applying any of the above ambiguity aversion frameworks to climate change is to 
consider the decision-making processes over time.  Climate change decisions are not necessarily static 
ones.  As new information and new technologies become available, responses to climate change will 
likely vary.  In this section, we will provide a brief survey of attempts to model the resolution of 
ambiguity, or one type of learning.16  As more information becomes available, for example, scientific 
uncertainty over the affects of climate change is likely to be reduced.  In some climate change decision-
making exercises, it may be necessary to be able to accommodate this type of learning.

5.4.1 Two-Period Models
For exercises in how learning affects individual decision-making in a partial equilibrium context, some 
papers have adopted a simple two- or three- period model with exogenous learning.  However, as these 
papers show, even simple models of ambiguity and learning do not always yield unambiguous 
conclusions about how ambiguity affects decision-making.  Ulph and Ulph (1997) construct a two-
period model to analyze how learning affects optimal abatement policy.  Their model addresses risk 
given uncertain irreversible thresholds.  This paper addresses learning given risk and does not include 
ambiguity.  Ingham et al. (2007) extend on that paper by including a parameter for adaptation in their 
model.  Baker (2005) incorporates a simple learning model in a strategic game theoretic framework to 
model how the correlation of climate change damages across different countries affects the equilibrium 
level of emissions.  Lange and Treich (2008) introduce ambiguity and ambiguity aversion to a two-
period decision framework.  

5.4.2 Recursive Models
In order to embed learning in a model that looks into the indefinite future as opposed to two or three 
periods, additional modeling tools are needed.  Epstein and Schneider (2003) develop a recursive 
framework where in each period the ambiguous prior distributions are updated according to Bayes' 
rule.  Bayesian updating is both an intuitive method for updating subjective probabilities (or learning) 
and guarantees dynamic consistency.17  In another paper, they extend this concept to accommodate 
another notion of learning based on likelihood functions.  In this model, they use a likelihood ratio test 

16 Endogenous learning in recursive climate change through research is beyond the scope of this study.  However, this 
could be an alternative to the exogenous learning or Bayesian updating models included here.

17 Dynamic consistency means that if in all possible states of the world in the future, outcomes from one act are preferred 
to outcomes from another act, the first act should be preferred now (ex ante) as well.  This is a main condition that 
allows recursive modeling with ambiguity.
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to discard priors that are not sufficiently likely given the observed outcomes.  This paper also highlights 
that although each new piece of information results in learning, it is possible that the decision-maker's 
understanding will not converge to one “true” probability distribution (for example, the correct 
parameterization and climate model), and that situations may exist where ambiguity is never 
completely resolved (Epstein and Schneider 2007).

Recursive MEU Models
Epstein and Schneider then apply these theoretical techniques to modeling asset prices in financial 
markets given MEU preferences and ambiguous asset returns (Epstein and Schneider 2008; Epstein and 
Schneider 2010).  Leoppold et al. (2008)develop a similar model to analyze asset returns using 
ambiguity aversion and MEU preferences in an attempt to explain the equity premium puzzle.

Recursive Smooth Ambiguity
Hanany and Klibanoff develop a general theoretical framework that is extended by Klibanoff, 
Marinacci and Mukerji to allow dynamic recursive modeling of ambiguity under Smooth Ambiguity 
preferences (Hanany and Klibanoff 2009; Klibanoff et al. 2009).  The application of this model would 
be similar to the applications of the Recursive MEU Models above.

Case-Based Decision Theory (CBDT)
An alternative form of updating from Bayesianism has been developed in the CBDT literature.  Billot 
et al. (2005) provide an axiomatic framework for how individuals could use past experiences and 
observations to update priors based on the frequency of observations and their similarity to the current 
circumstances .  Eichberger and Guerdjikova (2010) extend this framework to include an “optimism” 
parameter that is analogous to the α-MEU for decision-making under ambiguity.

Other Models
Hansen and Sargent (2001) developed their Multiplier Preferences model for dynamic applications. 
Their framework was designed to be used under conditions where past observations made it impossible 
for a decision-maker to distinguish the correct model from a set of alternative models.  In this 
framework, as time passes, new information would be incorporated into the entropy function, which 
would alter the set of plausible models the decision-maker cannot distinguish from the correct one, and 
the decision-maker would update his policies accordingly, always choosing the policy that maximizes 
utility in the worst plausible model.

Lempert and Collins develop a model driven by applied, rather than theoretical, concerns.  Their model 
is motivated by a precautionary principle that decision strategies should be robust to alternative 
possibilities given ambiguity.  This framework follows a more heuristic approach that attempts to 
present the modeling information in a way that non-technical decision-makers can better understand to 
inform the development of policies that are robust to many possible future outcomes, though not 
necessarily optimal according to subjected expected utility maximization (Lempert and Collins 2007; 
Lempert et al. 2009).

It is important to note that not all models of climate change find that learning occurs on a sufficiently 
short time scale.  Leach (2007) conducts a simulation where the true impact of greenhouse gases on 
temperature increases are defined by an unknown parameter or parameters, and there is some variance 
in annual temperature values.  Learning occurs as observed temperature values are used to update 
estimates of the unknown parameter(s).  Leach simulated two types of models, a reduced form and an 
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Integrated Assessment model.  The paper finds that with Bayesian updating alone, it takes hundreds or 
thousands of years to resolve the uncertainty about the true underlying parameters. 

6. Discussion and Directions for Future Research
The field of climate change economics is beset with uncertainties.  This survey has attempted to both 
give a sense of what those uncertainties are, why they are important, and what the main considerations 
are that economists need to take into account when thinking about them.  This review has also surveyed 
the main theoretical developments in modeling ambiguity in the hopes of pointing the way for future 
research to incorporate what advances in theory and experiments have told us about ambiguity aversion 
and decision-making under ambiguity into climate change decision-making.

By including ambiguity aversion into climate change decision-making, the precautionary principle is 
being incorporated, but with a more rigorous theoretical basis.  In doing so, the decision-maker is 
implicitly making a tradeoff by sacrificing standard expected utility in order to gain greater resilience 
of their decisions to the multiple possible climate futures.  By maximizing ambiguity sensitive expected 
utility, an ambiguity averse decision-maker will choose a strategy that is more robust to alternative 
climate models.

Additionally, future research could focus on how ambiguity attitude is affected by income.  Developing 
and developed country policy-makers and citizens may have different attitudes toward ambiguity due 
to their differing wealth levels that could affect their climate change decision-making.
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Appendix A: Formal Treatment of Decision Theories
In the text, decision theories were presented informally so they would be understandable to non-
technical readers.  This appendix includes the formal presentation of each.

In this section, the notation will be as follows: von-Neumann-Morgenstern utility function u , a set of 
priors C  which is the set of all possible probability distributions with P∈C  where P  is a prior 
distribution in the set C , L  is a set of outcomes of a “horse lottery,” or a lottery where each outcome 
has an uncertain probability as in the probability of any horse winning a race (subjective probabilities), 
Y  is a set of outcomes of a “roulette lottery,” or a lottery where each outcome has a known probability 
of occurring, such as the spinning of a roulette wheel (objective probabilities) (Anscombe and Aumann 
1963), acts f , g , and h  are outcomes of horse lotteries,  ,∈[0,1] , and Lc  is a lottery with a 
certain outcome.

Additional notation will be defined in each subsection as it is needed.  

A.1 Choquet Expected Utility (Gilboa & Schmeidler 1989)
Schmeidler's Choquet Expected Utility began the formalization of ambiguity in decision theory.  This 
model also forms the basis of the MEU and α-MEU models.

Define a finite step function for non-additive probabilities and its Choquet Integral:

a=∑
i=1

k

i E i
*  where 1 2... k

∫
C

a dv=∑
i=1

k

i−i1v ∪j=i

i
E j

Utility Representation given the Choquet Integral
U  f =∫

C
u⋅ f dP

The utility representation depends on the nonadditive probabilities defined above.  The important 
concept is that nonadditive probabilities allow for the inclusion of information about ambiguity attitude 
that additive probabilities do not (additive probabilities assume ambiguity neutrality).  The difficulty 
encountered for practical application is there is no clear method for determining probabilities that are 
not additive.

Ambiguity Averse if:
U [ f 1− g ]≥U  f 1−U g 

Ambiguity Loving if:
U [ f 1− g ]≤U  f 1−U g 

A.2 Maximin Expected Utility (MEU) (Gilboa and Schmeidler 1989)
Axiom Results
This paper defines a set of axioms that yield the following theorem:
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f % g⇔min
P∈C
∫ u⋅f dP% min

P∈C
∫ u⋅g dP

Therefore, act f  is preferred to g  if and only in the worst possible prior distribution, the utility of f is 
greater than that of g in its worst possible prior distribution.

Utility Representation
U  f =min {∫ u⋅ f dP | P∈C }

A.3 α-Maxmin Expected Utility (α-MEU) (Paolo Ghirardato, Maccheroni, and Marinacci 2004)
The Choquet Expected Utility and MEU representations serve as the theoretical basis for the α-MEU 
Expected Utility.

Define a function a  which takes any action f  given the uncertainty over the information available so 
that for all possible f  and information sets, a  f ∈[0,1] .

Utility Representation of  α-MEU
U  f =a  f min

P∈C
∫u⋅ f dP1−a f max

P∈C
∫ u⋅ f dP

The α-MEU includes a characterization with a constant  .  In this case the ambiguity attitude only 
depends on the maximum and minimum expected values from the priors.

U  f =min
P∈C
∫ u⋅ f dP1− max

P∈C
∫u⋅ f dP

A.4 Smooth Ambiguity (Maccheroni et al. 2006)
Define a function   which captures the ambiguity attitude of the decision maker.     can be thought 
of as an analog of the von-Neumann-Morgenstern utility function, except it is a utility function over 
ambiguity.  As such, a concave   results in ambiguity aversion just as a concave u  results in risk 
aversion.    is a measure of the probability that the specific P  is the correct probability distribution. 
This can be thought of as a second order probability distribution.

Utility Representation of  Smooth Ambiguity
U  f = ∫

P∈C
 ∫p∈Y

u⋅ f dP d 
Another advantage of this model is that it does not require piecewise linear (or kinked) utility curves. 
The authors characterize this as “second-order ambiguity sensitivity” as opposed to the first-order 
sensitivity of a kinked indifference curve.  The term Smooth Ambiguity reflects the non-kinked nature 
of the indifference curves.

A constant ambiguity aversion representation of   is presented in the paper as:
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x={1−e− x

1−e−
if 0

x if =0

A.5 Variational Preferences (Hansen & Sargent 2001; Maccheroni et al. 2006)
This preference model is a generalization of models that were developed for use in situations with 
multiple possible prior literature and robust control literature.  For this model, define a function 
b :c [0,∞ )  and x f  as the certainty equivalent of action f .  The notion of Variational Preferences 
states that:

f % g⇔min
P∈C
∫u⋅ f dPc P ≥min

P∈C
∫ u⋅g dPc P 

Where for each utility function u , there exists a unique, minimal index of ambiguity aversion c* , 
such that:

c* P=sup ux f
−∫ u  f dP 

Utility Representation
U  f =min

P∈C
∫u⋅ f dPc*P 

A.6 Robust Control/Multiplier Preferences (Hansen and Sargent 2001; Maccheroni et al. 2006)
This is a special case of Variational Preferences that developed from the Robust Control to be used in 
macroeconomic and financial modeling.  Multiplier Preferences follows the Variational Preferences 
model above where c* P=RwP || q∀ p∈C ,  q  is the probability distribution the agent has 
chosen to use, C  is the set of all possible subjective priors,   is a positive constant measure of 
ambiguity aversion (lower   implies greater ambiguity aversion), w  is a nonuniform weighting 
function, and RP ||q  is the weighted relative entropy of q defined by:

Rw P || q={∫w x dP
dq
x  log[dP

dq
x ]−dP

dq
x 1dq x  if P∈C q

∞ otherwise

Utility Representation
U  f =min

P∈C
∫ {u⋅f dPR P || q}

A.7 Case-Based Decision Theory (CBDT) (Epstein & Schneider 2003; Epstein & Schneider 2007)
This model uses a separate notation from the ones above.  It depends on a discrete set of similar 
circumstances in the past that the decision-maker uses to compare to the current situation.  Define 
individual problems and a set of decision problems as p , q∈P , actions a ,b∈A , outcomes r∈R , 
and similar past circumstances in the decision-maker's memory M  with n  individual cases.  Each 
case can be identified as a problem-action-outcome triple  p ,a , r  ,q ,b , r ∈C=P  x A  x R .  The 
decision-maker has a similarity function s [ p , a  ,q ,b ]ℝ+  which identifies the similarity between 
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circumstance-act combinations.

Utility Representation
U sa= ∑

q , b , r∈M
s [ p , a , q ,b ]u r 

A.8 Recursive Multiple Priors (Epstein and Schneider 2003; Epstein and Schneider 2007)
Using the same notation as before the CBDT, this model includes a time and state (past realization) 
component.  States are represented by s , where st  represents the state in time t  and s t  represents all 
past states up to and including t , st={s1, s2, ... , st−1 , st} .  In this case, the prior set of probability 
distributions C  is depends on the history of past states of the world, so C  s t  and is updated each 
period.

Utility Representation
U t x ;s t= min

P∈C t s
t

EP [u xt  ut1x ; s t , st1]

This utility representation could be from any expected utility theory.
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