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Summary

Crucial lessons from past mass extinctions of life on Earth.
Information from many sciences bears on causes and
consequences of both climate change and mass extinctions.
Evidence from past 500 million years provides a warning:
climate change is main culprit in past mass extinctions,
humanity is just the latest trigger.

Approaches & evidence from many disciplines compelling:
increasing levels of atmospheric greenhouse gases lead to
world-wide temperatures slowly rising on a varying trend.
Use ancient framework of Earth, Air, Fire and Water as four
‘essential ingredients’ for life to explore climate change, and
actions humanity can take to avoid disaster.
Adaptation not meaningful if food, water & land resources
inadequate: yet first mitigation steps can be beneficial.
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Econometric modelling toolkit effective in many applications

To establish robust empirical evidence, essential to account for:
cumulative effects of changes, turbulent periods and major shifts
as well as relevant drivers like greenhouse gases.

Confirmed that trend in atmospheric CO2 is anthropogenic;

showed future climate will be very different than paleoclimate
from anthropogenic emissions;

detected impacts of volcanic eruptions on global temperature;

modelled UK CO2 emissions over 160 years & evaluated
impacts of policy despite major shifts;

showed that improved forecast accuracy of hurricanes helps
mitigate their damages;

estimated costs of temperature changes of 1.5◦C versus 2.0◦C.
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Route map: Past, present and future of climate change

(1) Can humanity really change the climate? Yes.

(2) Distant past: 500 million years of mass extinctions

(3) Last 800,000 years: Ice Ages, atmospheric CO2 & sea-level

(4) Middle ages on: detecting impacts of volcanic eruptions

(5) Industrial Revolution–present: modelling UK CO2 emissions

(6) Present: modelling the costs of mis-forecasting hurricanes

(7) Future: COP21–impacts of 1.5◦ versus 2◦ & sea-level rise

(8) Conclusions: what can be done?
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Our planet’s climate: Earth, Air, Fire and Water

Our climate depends on energy balance between Sun’s incoming
radiation & re-radiation.
Atmospheric greenhouse gases (GHGs, like water vapour and
carbon dioxide), crucial in retaining heat:
too depleted and the planet cools, (once being a ‘snowball’ with
glaciation in Death Valley),
whereas excessive GHGs lead to very warm periods (e.g., Eocene
about 50 million years ago).

Past climate change driven by natural forces (plate tectonics,
volcanism & orbital variations).
Life has survived great changes & thrived in very different global
temperatures, but en route huge numbers of species went extinct,
even if long after, new species evolved for the new environment.
Change is the key word—humanity is now changing the climate
by vast emissions of GHGs mainly CO2 from burning fossil fuels.
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Changes in atmospheric CO2 over Ice Ages—and now

Change in Ice-Age atmospheric CO2 
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Thousand-year changes in parts per million (ppm) in atmosphere.
1 ppm = 7800 billion kg of CO2
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Earth

Earth: place holder for our planet’s land as both living space and
soil for agriculture, forests and other ‘wild’ areas.
Continents & topography shaped by plate tectonics & volcanoes
— both affect climate & played key roles in mass extinctions.

Food supply takes roughly 40% of the planet’s land area, or
50million km2.

Climate change is:
increasing land flooding—‘rivers in the sky’ can hold more water
than the Mississippi River, creating damage & loss of soil;
but also causing drought, leading to loss of crops, dust storms, &
wild fires from Australia, Amazon, & California to Siberia, a
potential tipping point from tundra melting.
Crops grown using artificial fertilizers & farmland created by
deforestation, plus animal husbandry all lead to CO2 emissions.
Sea level rises cause coastal flooding, reducing usable land area.
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Rivers-in-the-sky; dust-storm; wild fire; coastal flooding

https/://www.psl.noaa.gov/arportal https://public.wmo.int/en/our-mandate/focus-areas/environment/SDS

https://earthobservatory.nasa.gov/images/81919/rim-fire-california https://en.wikipedia.org/wiki/Coastal_flooding

David F. Hendry (Climate Econometrics) Taking Stock of Climate Change Webinar 7 / 63



Air. Our atmosphere is a thin blue line round the planet:
as thick as a sheet of paper round a soccer ball

Air: place holder for our atmosphere of nitrogen (78%) & oxygen
(21%), with GHGs water vapour (0.4%), carbon dioxide (CO2),
nitrous oxide (N2O), methane (CH4), ozone + some noble gasses.

http://spaceflight.nasa.gov/gallery/images/station/crew-22/lores/s130e009730

Earth’s gravity & magnetic field essential to retain atmosphere
against solar wind & protect ozone layer from damaging radiation.
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Atmospheric gases

Atmospheric gases have changed greatly over deep time, especially
from volcanism & exchange of CO2 for oxygen through photosynthesis.

Atmospheric blanket essential to life
but ‘greenhouse gases’ receive then radiate energy at different
wavelengths between ultraviolet and infrared.

In 1856, Eunice Foote showed that a flask of CO2 heated greatly
in the sun, whereas those of water vapour and dry air did not:
see https://doi.org/10.1098/rsnr.2020.0031.

Longwave infrared (IR) re-radiation from GHGs is responsible for
the atmospheric greenhouse effect.

Mars and Venus suggest atmospheric protection needs to be ‘just
right’: but Earth’s range has included Ice Ages and tropical conditions.
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Other anthropogenic greenhouse gas emissions

Nitrous oxide emissions from catalytic converters and nitrogen &
phosphate fertilizers have doubled in last 50 years
now about 7% of greenhouse gas emissions.
N2O 300 times more potent than CO2 as a greenhouse gas.

Atmospheric methane now double levels over past 800,000 years.
CH4 about 20 times as powerful as CO2 as a GHG: half-life in
upper atmosphere of around 15 years getting converted to CO2.

Current estimates of methane in hydrates are over 6 trillion
tonnes, roughly twice the CO2 in all fossil fuels.

Melting Siberia’s permafrost would lead to
a marked increase in global temperatures.
Go to any lake in northern Siberia, hold
a flame over a hole drilled in ice, but jump
back quickly as the methane catches fire.
Possible collapse in rainforest ecology
from resulting changes in rainfall patterns.
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Fire

Fire: place holder for energy, presently from burning fossil fuels
releasing GHGs in vast volumes.
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Cannot continue to consume within ‘carbon budget’ for ‘net zero’,
so face dangerous changes. Hope from renewable energy
drawing on fire (sunlight) and air (wind).
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Water: Earth is a blue sphere & oceans may look vast
but all its water is just a big puddle

Fooled by widespread shallow oceans: largest sphere of all water
just 860 miles in diameter. Easy to heat, pollute, fill with plastic
waste, and turn to weak carbonic acid.

Credit: Howard Perlman, USGS; globe illustration by Jack Cook,
Woods Hole Oceanographic Institution c© Adam Nieman.

David F. Hendry (Climate Econometrics) Taking Stock of Climate Change Webinar 12 / 63



Route map: Past, present and future of climate change

Temperature Anomaly, May 2006-2016 (relative to May1955-1965)

Degrees C

(1) Can humanity really change the climate? Yes.

(2) Distant past: 500 million years of mass extinctions

(3) Last 800,000 years: Ice ages, atmospheric CO2 & sea-level

(4) Middle ages on: detecting impacts of volcanic eruptions

(5) Industrial Revolution–present: modelling UK CO2 emissions

(6) Present: modelling the costs of mis-forecasting hurricanes

(7) Future: COP21–impacts of 1.5◦ versus 2◦ & sea-level rise

(8) Conclusions: what can be done?
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500 million years of marine extinctions

Fossil record disappearances: ‘extinctions timeline’ at boundaries
with Ordovician, Devonian, Permian,Triassic and Cretaceous.

Percent of species vanishing from fossil record reveals fragility of
life forms to major climate changes.
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Five mass extinctions over 500 million years

First mass extinction at end of Ordovician period, roughly 440 mya,
probably due to global cooling.
Second around 375 mya, near close of Devonian era:
rapid spread of plant life on land reduced atmospheric CO2 by
photosynthesis–so again cooling.

Third and worst, near Permian–Triassic (P/Tr) boundary, about 250
mya: eliminated 80-90% of ocean dwellers, about 70% of plants,
animals, & insects, from prolonged volcanic eruptions: Siberian Traps.
Fourth extinction at end of Triassic, about 200 mya, opened
ecological niche for dinosaurs in Jurassic from massive volcanism
(Central Atlantic Magmatic Province).
Fifth major extinction at Cretaceous–Tertiary (K/T) boundary, roughly
60 mya: non-bird dinosaurs went extinct.

Decan Traps. Source: Wikipedia

Chicxulub impact crater near Yucatan peninsula,
usually implicated, but also volcanism:
Decan Traps, 300,000 cubic kilometers of basalt.
All due to climate change cooling or heating.
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Route map: Past, present and future of climate change
Temperature Anomaly, May 2006-2016 (relative to May1955-1965)

Degrees C

(1) Can humanity really change the climate? Yes.
(2) Distant past: 500 million years of mass extinctions
(3) Last 800,000 years: Ice ages, atmospheric CO2 & sea-level

(4) Middle ages on: detecting impacts of volcanic eruptions
(5) Industrial Revolution–present: modelling UK CO2 emissions
(6) Present: modelling the costs of mis-forecasting hurricanes
(7) Future: COP21–impacts of 1.5◦ versus 2◦ & sea-level rise
(8) Conclusions: what can be done?
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Ice Ages and past climate variability

Discovery of a ‘great ice age’ by Louis Agassiz (1840) based on
movements of glaciers in his native Switzerland:
explained previously puzzling features of Scottish landscape.

Archibald Geikie (1863) found plant fragments between layers of
glacial deposits, so warm periods must have separated glacial.

Calculations of why ice ages occur & a time line by James Croll
(1875) by variations in Earth’s orbit gave a theoretical
mechanism.

Croll’s research amplified by Milutin Milankovitch (1969)
calculating solar radiation at different latitudes from interacting
changes in eccentricity, obliquity and precession of the Earth.

Milankovitch also corrected Croll’s assumption that winter
minimum temperatures mattered in starting ice ages to show that
low summer maxima were more important.
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Ice Ages drivers over last 800,000 years–still operating!

The three main interacting orbital changes affecting incoming
solar radiation (insolation) that could drive ice ages and
inter-glacial periods are:

(a) eccentricity (Ec): 100,000 year periodicity from non-circularity
of Earth’s orbit round the Sun by gravitational influences of other
solar system planets;

(b) obliquity (Ob): 41,000 year periodicity from changes in the tilt
of the Earth’s rotational axis relative to the ecliptic;

(c) precession (Pr): 23,000 and 19,000 year periodicities due in
part to Earth not being an exact sphere.

Measured at 1000-year intervals: in next Figures, X-axes labelled
by time around present, from 800,000 years ago.
See Paillard, Labeyrie, and Yiou (1996).
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Orbital drivers of Ice Ages and into the future
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Ice-age orbital drivers: (a) eccentricity (Ec); (b) obliquity (Ob); (c)
precession (Pr); (d) Summer-time insolation at 65◦ south (St).
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Ice Ages data based on Antarctica
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Large international collaboration for Ice-Age time series: (a) Ice
volume (Ice); (b) atmospheric CO2 in ppm (CO2); (c) temperature
(Temp); (d) shorter-sample sea level changes in meters.
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Close relationships between the Ice Ages variables
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(a) CO2 and the negative of ice volume (IceNeg); (b) CO2 and
temperature; (c) temperature and IceNeg; (d) IceNeg and sea level.
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Ice Ages data

If Ice Ages due to orbital variations, why should CO2 levels
correlate so closely with IceNeg?
Is that what changes Temp & so Ice?

As oceans hold about 60 times more CO2 than the atmosphere,
deep oceans, especially Southern Ocean, act as carbon sinks
during cold periods but release CO2 as the planet warms,
enhancing cooling and warming: see e.g., Jaccard et al. (2016).

So orbital variations drive Temp which changes Ice volume and
CO2 levels, that feedback to change Temp.

To resolve, Castle and Hendry (2020) modelled Ice, CO2 and Temp
jointly as functions of the orbital variables for data up to 100,000
years ago and forecast the remainder.
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A hundred steps-ahead forecasts with error bands

100 steps-ahead forecasts Ice 
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(a) for Ice; (b) for CO2; (c) for Temp: ellipses show ‘something
happened’ near modern times.
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Ending of the last Ice Age: long arm of humanity?

Could reflect slowly growing divergence that might derive from
the increasing influence of humanity envisaged by Ruddiman
(2005) who suggests humanity began to influence climate 10,000
years ago when domesticating animals and starting farming.

From presence of proto-weeds that need ground disturbance to
grow in new areas, Snir et al. (2015) provide evidence of origins of
cultivation long before Neolithic farming, dating such events to
around 23,000 years ago.

Earth’s orbital path is known far into the future, so can calculate
scenarios for atmospheric CO2 in alternative futures: no human
intervention, or continued anthropogenic emissions keeping CO2

at 400ppm (approximately where we are now) or even 560ppm
(roughly Representative Concentration Pathway, RCP8.5).
Start forecasts 10,000 years ago.
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110 steps-ahead forecasts from model, no human impact

Forecasts Ice Fitted 
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(a) for Ice; (b) for CO2; (c) for Temp. These long-run forecasts give a
path well within the range of past data, matching relatively
quiescent orbitals. But ellipses show outcomes already differ.
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Scenarios for anthropogenic CO2 in two possible futures
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(a) & (b) CO2 = 400ppm and 560ppm; 110 steps-ahead conditional
forecasts with error bands for (c) Ice and (d) Temp. At 560ppm face a
near ice-free planet, and global temperatures around 6◦C higher.
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Post glacial sea-level rise

Sea level has increased dramatically since the end of the last ice
age: roughly 120 meters. Source
http://www.climateplus.info/2015/07/08/scoping-long-term-sea-level-rise/
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Route map: Past, present and future of climate change
Temperature Anomaly, May 2006-2016 (relative to May1955-1965)

Degrees C

(1) Can humanity really change the climate? Yes.
(2) Distant past: 500 million years of mass extinctions
(3) Last 800,000 years: Ice ages, atmospheric CO2 & sea-level
(4) Middle ages on: detecting impacts of volcanic eruptions

(5) Industrial Revolution–present: modelling UK CO2 emissions
(6) Present: modelling the costs of mis-forecasting hurricanes
(7) Future: COP21–impacts of 1.5◦ versus 2◦ & sea-level rise
(8) Conclusions: what can be done?
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Detecting impacts of volcanic eruptions in temperature
reconstructions

Uncertainty around the timing and magnitude of eruptions

but can correct tree-ring based temperature records if we can
detect their impacts

so distinguish temperature reductions due to eruptions from
natural and human-induced variation.

Temperature (observed) Temperature

1200 1300 1400 1500 1600 1700 1800 1900 2000

-0.5

0.0

0.5

C

Temperature (observed) Temperature (Tree-Ring Reconstruction)

Volcanic Eruptions?

Research with Felix Pretis, Lea Schneider and Jason Smerdon, (2016)

David F. Hendry (Climate Econometrics) Taking Stock of Climate Change Webinar 29 / 63



Eruptions create ‘outliers’ in temperature reconstructions

Emissions block solar radiation which reduces temperatures
(closer tree rings), but emissions gradually removed from
atmosphere. ‘Shape’ of that response is relatively standard.

 

Design indicators from physical-theory shape of ν.
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Detecting volcanic impacts on temperature reconstructions:
1200–2000 using our machine learning software

Northern Hemisphere Temperature Model Fit 
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Forecasting temperature recovery immediately after eruptions

Example eruption: 1641 Parker (Philippines)
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Temperature AR(1) Forec. Volcanic Indic. AR(1) Forec.

AR(1) Forecast - excluding Break-Indicator
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Route map: Past, present and future of climate change
Temperature Anomaly, May 2006-2016 (relative to May1955-1965)

Degrees C

(1) Can humanity really change the climate? Yes.
(2) Distant past: 500 million years of mass extinctions
(3) Last 800,000 years: Ice ages, atmospheric CO2 & sea-level
(4) Middle ages on: detecting impacts of volcanic eruptions
(5) Industrial Revolution–present: modelling UK CO2 emissions

(6) Present: modelling the costs of mis-forecasting hurricanes
(7) Future: COP21–impacts of 1.5◦ versus 2◦ & sea-level rise
(8) Conclusions: what can be done?
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Industrial Revolution began in the UK in the mid-18th Century

Startling consequences 250 years later:

real income levels are 7–10 fold higher per capita,
many killer diseases tamed, & longevity roughly doubled.
Industrial Revolution led to vast benefit for humanity.

Average real GDP per capita across regions
The measures are adjusted for inflation (at 2011 prices) and also for price differences between regions
(multiple benchmarks allow for cross-regional income comparisons).

1870 1900 1920 1940 1960 1980 2000 2016

$10,000

$20,000

$30,000

$40,000

$50,000  Australia, NZ, 
Canada, US

Western Europe

Western Asia
Eastern Europe

Latin America

East Asia

Africa

Source: Maddison Project Database (2018) OurWorldInData.org • CC BY-SA
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Unintended cost of major increase in atmospheric CO2

and hence in the planet’s temperature.

1960 1980 2000 2020
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Annual changes in CO2 (ppm)

(a)

Atmospheric CO2 increases still increasing–despite CoP21
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Unintended cost of major increase in atmospheric CO2

and hence in the planet’s temperature.
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https://climate.nasa.gov/vital-signs/global-temperature/
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Global sea-level rise since 1880

Rise of more than 20cm since 1880:
now 3.4mm p.a. versus 1.3mm p.a. 1850-1992
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Cumulative sums of anthropogenic and natural CO2

atmospheric contributions since 1982

CO2 Mauna Loa 
Cumulated anthropogenic CO2 changes from model 
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a] Anthropogenic contributions to atmospheric CO2; b] Vegetation
contributions; c] SOI contributions (Hendry & Pretis, 2013).
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Recent increases in atmospheric CO2 levels
are anthropogenic

Unintended cost of Industrial Revolution has been major increase
in atmospheric CO2.
Resulting climate change has potentially dangerous implications,
highlighted by IPCC and many authors including Stern (2006).

Led to agreement in Paris at COP21 to seek to limit temperature
increases to less than 2◦C, and “to pursue efforts to limit it to 1.5◦C”.

I will illustrate the current success of the
UK’s CO2 emissions reduction from a model
over 1860–2016 to disentangle causes,
and the role of policies like the

UK’s Climate Change Act of 2008.
Now lowest per capita since 1860!

But much still to do.
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UK CO2 emissions and fossil fuels
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(a)

UK’s CO2 emissions per capita below 1860, yet real incomes have
risen more than 7-fold.
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CO2 emissions mainly driven by coal usage till mid-1950s then
drop steadily, as does oil use after 1970s crises
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UK CO2 emissions and fossil fuels

1875 1900 1925 1950 1975 2000
5

6

7

8

9

10

11

12

(c)(c)(c)

C
O

2 e
m

is
si

on
s,

  t
on

s 
pe

r 
ca

pi
ta

 →

2013→↑
1860

Log
scale

Mt

(a)

Coal (Mt) 
Oil (Mt) 
Natural Gas (Mtoe) 
Wind+Solar (Mtoe) 

1875 1900 1925 1950 1975 2000

50

100

150

200 (b)

Coal (Mt) 
Oil (Mt) 
Natural Gas (Mtoe) 
Wind+Solar (Mtoe) 

Ratio of CO2 emissions to capital stock 

1875 1900 1925 1950 1975 2000

0.5

1.0

1.5

(c) Ratio of CO2 emissions to capital stock 

UK’s CO2 emissions have fallen by 92% relative to its capital
stock from 1860
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CO2 emissions have no constant relations to individual fuel
usages: all time series vary hugely
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Distributional shifts of total UK CO2 emissions in Mt p.a.

UK CO2 emissions, 1860−1899 
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Distributional shifts of total UK CO2 emissions in Mt p.a.
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Distributional shifts of total UK CO2 emissions in Mt p.a.
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Distributional shifts of total UK CO2 emissions in Mt p.a.

UK CO2 emissions, 1860−1899 
UK CO2 emissions, 1900−1939 
UK CO2 emissions, 1940−1979 
UK CO2 emissions, 1980−2017 
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Model the evolving dynamic relation of UK’s CO2 emissions by
coal, oil, GDP and capital, allowing for shifts in the relationship.
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Selecting step shifts using a very general model

Detecting step shifts similar to detecting volcanic eruptions.

Retained only if model otherwise does not fit the data.

Found 3 large step shifts clearly identified with major events:

1926 was Act of Parliament creating UK’s nationwide electricity grid.

1969 saw start of conversion from coal gas to natural gas.

2010 follows implementation of the Climate Change Act of 2008.

We did not impose that policy had an effect–the data tell us it did.
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Outcomes of modelling the UK’s total CO2 emissions
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Actual and fitted values of model for UK CO2 emissions.
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Multi-step forecasts
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Outcomes and h-step point and interval forecasts shown as bars
and fans with & without step indicators (SIS). RMSFE is root
mean-square forecast error in Mt.
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Testing UK’s achievement of 2008 Climate Change Act targets
and simulating initial aim of 80% reduction by 2050

(a) 5-year targets and outcomes for CO2.
(b) reductions in CO2 emissions from model simulation: no coal,
75% reductions in oil & gas; 50% from agriculture, construction
and waste, compressed to 5-year intervals after 2015.

CO2 Emissions 
CC Act 2008 CO2 Target 

2008 2010 2012 2014 2016 2018

350

400

450

500

550
(a)

Mt

CO2 Emissions 
CC Act 2008 CO2 Target 

Simulated trajectory 
In-sample fit 
CO2 emissions 

100

200

300

400

500

600
(b)

   2005        2010        2015

2050
↓

Mt

Simulated trajectory 
In-sample fit 
CO2 emissions 

Achieving net zero emissions will need both sequestration and
even extraction of CO2 from the atmosphere.
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Route map: Past, present and future of climate change
Temperature Anomaly, May 2006-2016 (relative to May1955-1965)

Degrees C

(1) Can humanity really change the climate? Yes.
(2) Distant past: 500 million years of mass extinctions
(3) Last 800,000 years: Ice ages, atmospheric CO2 & sea-level
(4) Middle ages on: detecting impacs of volcanic eruptions
(5) Industrial Revolution–present: modelling UK CO2 emissions
(6) Present: modelling the costs of mis-forecasting hurricanes

(7) Future: COP21–impacts of 1.5◦ versus 2◦ & sea-level rise
(8) Conclusions: what can be done?
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Hurricane damages: do good warnings help mitigate?

Hurricanes: frequently occurring, destructive natural events
4 of top 5 costliest US disasters from this decade’s hurricanes.
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BHurricane Katrina [2bb5]

Billions of yrealK 3US

Top 10 Costliest Weather and Climate
Disasters in the United States (1980-2017)

Source: www$ncdc$noaa$gov:billions:events

Climate change can alter location, frequency, and intensity of such storms
Does forecast uncertainty impact hurricane damages?

See Martinez (2020)
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Must account for all influences on damages
including adaptation efforts driven by beliefs

Embed forecast uncertainty in a general model of hurricane
damages and use Autometrics automatic model selection:

Income Population Housing Units

Wind Speed/Pressure Max Storm Surge Max Rainfall

Historical Frequency

Seasonal Cyclone Energy

Soil Moisture Air Temperature Forecast Uncertainty Other

David F. Hendry (Climate Econometrics) Taking Stock of Climate Change Webinar 47 / 63



Must account for all influences on damages
including adaptation efforts driven by beliefs

Embed forecast uncertainty in a general model of hurricane
damages and use Autometrics automatic model selection:

Income Population Housing Units

Min Pressure Max Storm Surge Max Rainfall

Historical Frequency

Seasonal Cyclone Energy

Soil Moisture Air Temperature Forecast Uncertainty Other

David F. Hendry (Climate Econometrics) Taking Stock of Climate Change Webinar 47 / 63



Out of sample damage ‘prediction’
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Green box shows calculation from simple damage model; pink shading likely
range of damages; blue triangle is from our model with our uncertainty range.
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Cumulative hurricane damages prevented by better forecasts
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Route map: Past, present and future of climate change
Temperature Anomaly, May 2006-2016 (relative to May1955-1965)

Degrees C

(1) Can humanity really change the climate? Yes.
(2) Distant past: 500 million years of mass extinctions
(3) Last 800,000 years: Ice ages, atmospheric CO2 & sea-level
(4) Middle ages on: detecting impacts of volcanic eruptions
(5) Industrial Revolution–present: modelling UK CO2 emissions
(6) Present: modelling the costs of mis-forecasting hurricanes
(7) Future: COP21–impacts of 1.5◦ versus 2◦ & sea-level rise

(8) Conclusions: what can be done?
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Projected economic impacts of 1.5C versus 2C by 2100
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Growth

see Pretis, Schwarz, Tang, Haustein, and Allen in Philosophical
Transactions of the Royal Society (2018), cited in IPCC report
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Global sea-level rise projections for strong mitigation,
weaker mitigation & business as usual to 2100

−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚

M
e

d
ia

n
 R

S
L

 (
2

1
0

0
)

1.5 oC pathway

120˚ 180˚ −120˚ −60˚ 0˚ 60˚
−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚

9
5

th
 p

e
rc

e
n

ti
le

 (
2

1
0

0
)

2.0 oC pathway

120˚ 180˚ −120˚ −60˚ 0˚ 60˚

~4.0 oC pathway

−0.8

−0.4

0.0

0.4

0.8

1.2

1.6

2.0

m

120˚ 180˚ −120˚ −60˚ 0˚ 60˚

Research by Luke Jackson with others (2018), cited in IPCC Report.

David F. Hendry (Climate Econometrics) Taking Stock of Climate Change Webinar 52 / 63



Route map: Past, present and future of climate change

Temperature Anomaly, May 2006-2016 (relative to May1955-1965)

Degrees C

(1) Can humanity really change the climate? Yes.

(2) Distant past: 500 million years of mass extinctions

(3) Last 800,000 years: Ice ages, atmospheric CO2 & sea-level

(4) Middle ages on: detecting impacts of volcanic eruptions

(5) Industrial Revolution–present: modelling UK CO2 emissions

(6) Present: modelling the costs of mis-forecasting hurricanes

(7) Future: COP21–impacts of 1.5◦ versus 2◦ & sea-level rise

(8) Conclusions: what can be done?

David F. Hendry (Climate Econometrics) Taking Stock of Climate Change Webinar 53 / 63



Implications of climate change

Past mass extinctions due to climate change:

albeit ‘natural’ not anthropogenic—but now may be us.
Little time left to control emissions & keep under 1.5◦C.

Atmosphere and oceans easily altered by human interventions by
emitting excessive CO2 and pollution.

Forecasting from model of ice-age glaciation but with
anthropogenic CO2 showed near ice-free planet.
Past ice-free Arctic Ocean has led to tundra melting, which could
release vast volumes of methane (see Vaks et al., 2019).

Extreme weather: high ‘wet bulb’ heat dangerous to life;
more powerful cyclones; increased coastal & inland flooding;
longer droughts; worse wild fires; overly acid oceans.

Imperative to quickly get to net-zero emissions globally.
What can be done?

David F. Hendry (Climate Econometrics) Taking Stock of Climate Change Webinar 54 / 63



Implications of climate change

Past mass extinctions due to climate change:

albeit ‘natural’ not anthropogenic—but now may be us.
Little time left to control emissions & keep under 1.5◦C.

Atmosphere and oceans easily altered by human interventions by
emitting excessive CO2 and pollution.
Forecasting from model of ice-age glaciation but with
anthropogenic CO2 showed near ice-free planet.
Past ice-free Arctic Ocean has led to tundra melting, which could
release vast volumes of methane (see Vaks et al., 2019).

Extreme weather: high ‘wet bulb’ heat dangerous to life;
more powerful cyclones; increased coastal & inland flooding;
longer droughts; worse wild fires; overly acid oceans.

Imperative to quickly get to net-zero emissions globally.
What can be done?

David F. Hendry (Climate Econometrics) Taking Stock of Climate Change Webinar 54 / 63



What can be done?

First decarbonize electricity generation: use Earth (thermal),
Air (wind), Fire (solar plus nuclear) and Water (hydro).
Renewables can eliminate coal, oil & natural gas from electricity
generation, but need massive increase & storage for still, cloudy
periods, and to balance grid supply facing greater variability.

Back up renewable electricity generation by safe small modular
nuclear reactors (SMRs) based on well-developed nuclear
engines in submarines.

UK econometric model shows climate policy has been effective:
big reductions in CO2 emissions at little aggregate cost by
eliminating coal, improved capital-stock and renewable-electricity
technologies, now fully competitive. But much more to do.

Local losses were not addressed, and must be in future.
Technical issues to research: storage systems; SMRs use of
transuranic waste & thorium.
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What else can be done?

Next, decarbonize ground transport–harder, but possible with
electric vehicles, fuel cells & hydrogen drive-trains.

To sustain 100% renewables, research modular graphene-based
carbon nanotube units (CNTs) to act as electrode
supercapacitors for storing electricity & recharging batteries.
Sandwich CNTs below a Faraday cage in a unit on vehicle’s roof:
increased distances yet rapid (dis)charging.

If viable, offers sufficiently light electricity storage to advance
developments in electric aircraft.

Ensure vehicles plugged into intelligent grid when not used:
higher price to recharge if not. Vehicle-to-grid could provide
low-cost investment electric storage system.

Technical issues to research: supercapacitors and batteries, plus
intelligent infrastructure of charging-discharging points.

https://www.sciencedirect.com/topics/engineering/supercapacitor
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And what more can be done?

Decarbonize households, construction and industry:
Replace household natural gas by green hydrogen, produced by
methane pyrolosis + electrolysis produced when other electricity
demands low. Store as liquid hydrogen.
Retrofit old buildings for improved insulation.
Install (hybrid) heat pumps, solar photovoltaics and evacuated
tube solar collectors on roofs.
Net zero new buildings need lower GHG-intensive materials.

Liquid hydrogen could supply a high heat source for industry.
CCS and CO2 extraction look essential, plus convert CO2 to a
useful fuel: https://www.sciencedaily.com/releases/2017/09/170918151710.htm

Technical issues to research: perovskite-based solar windows to
generate electricity; efficient CCS; lower GHG refrigerants &
building materials.
Fund research by prizes–successful historical route.
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Essential to reduce CO2 emissions from agriculture

Down to Earth! Need a lower ‘foodprint’

Reduce methane by
ruminant dietary changes (fumeric acid; asparagopsis taxiformis)
Human dietary changes to eating less mammal meat are feasible.

Reduce nitrous oxide by

mix artificial fertiliser with basalt dust, which also absorbs CO2;
cut cropland & environmental damage by better crop production
efficiency, + vertical & underground farms.

Improve aquaculture production by
marine protection areas, and seaweed farming (kelp; seagrass);
off-shore wind farms also act as marine reserves.

http://www.climateeconometrics.org/2020/09/21/decarbonising-agriculture/
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Air: reducing greenhouse gas emissions

Having invented the Industrial Revolution transforming world’s
wealth at the cost of climate change, UK is one of the first out,
reducing its CO2 emissions below the level first reached in 1894.

UK per capita CO2 emissions:
below their level in 1860—when UK was ‘workshop of the world’;
yet real per capita incomes more than 7-fold higher.

UK’s 33% emissions reductions of 177 Mt since 2008 the more
impressive given large global annual increases of more than 3ppm pa.

Key policy implication is climate policy can be effective as a
sensitive intervention point: big reductions in CO2 emissions by
eliminating coal, improved capital-stock and renewables.

Large emissions reductions have not involved major aggregate
costs, but local losses not tackled.
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Policy implications: creating virtuous circles and sensitive
intervention points

Integrated GHG reduction strategy essential for net-zero target.

Replacing oil by renewables electricity entails huge expansion:
hence vast storage requirement (so V2G & liquid hydrogen);
balance supply and demand (hydrogen from ‘surplus’ electricity).
By-product of methane pyrolosis is black carbon for graphene,
lowering cost of CNTs.

Increase taxes on oil as prices fall to maintain shift to all electric;
border CO2 import and deforestation taxes.

Research net CO2 absorbers & efficient separation & collection of
gasses. https://doi.org/10.1016/j.xcrp.2020.100210

‘Stranded assets’ could be a potential problem if legislation or
improved standards impose lower CO2 emissions targets and
financial markets have not adjusted.

Thank you
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Electricity generating technology costs in UK

Wind turbines and solar photovoltaics have fallen in cost and
increased in efficiency so rapidly over last two decades that, for
the UK at least, they offer low cost alternatives if carbon capture
and storage (CCS) is enforced (MWh = megawatt hour).

Power generating technology costs £/MWh 2015 2025 2040

Solar Large-scale PV (Photovoltaic) 80 44 33
Wind Onshore 62 46 44
Wind Offshore 102 57 40
Biomass 87 87 98
Nuclear PWR (Pressurized Water Reactor) 93 93 93
Natural Gas Combined Cycle Gas Turbine 66 85 125
CCGT with CCS 110 85 82

Nuclear power guaranteed price of £92.50/MWh for Hinkley Point C in 2023.
Lowest cost in bold; next lowest in green italic; bold if less than 2015.
Assumes increasing carbon taxes and falling CCS costs over time.

Source: Electricity Generation Costs 2020, UK Department for Business, Energy and

Industrial Strategy (BEIS)
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