Tariff Binding Overhang: Theory and Evidence

Mostafa Beshkar¹ Eric Bond² Youngwoo Rho²

¹University of New Hampshire

 $^2\mbox{Vanderbilt University}$

October 10, 2011 George Washington University

• Most market access commitments are in the form of Tariff Bindings.

- Most market access commitments are in the form of Tariff Bindings.
- Binding Overhang

- Most market access commitments are in the form of Tariff Bindings.
- Binding Overhang
 - **Applied Tariffs** are substantially below the binding rates in many sectors/countries.

Binding Status	# of sectors	Share(%)	Import	Share (%)
Applied Tariff below Binding	117,258	64.7	1.36e + 12	23.8
Strong Binding	29,197	16.1	3.72e + 12	65.0
Unbound	34,810	19.2	6.40e + 11	11.2
Total	181,265	100	7.062 + 12	100

Most market access commitments are in the form of Tariff Bindings.

Binding Overhang

 Applied Tariffs are substantially below the binding rates in many sectors/countries.

# of sectors	Share(%)	Import	Share (%)
117,258	64.7	1.36e+12	23.8
29,197	16.1	3.72e + 12	65.0
34,810	19.2	6.40e + 11	11.2
181,265	100	7.062 + 12	100
	117,258 29,197 34,810	117,258 64.7 29,197 16.1 34,810 19.2	117,258 64.7 1.36e+12 29,197 16.1 3.72e+12 34,810 19.2 6.40e+11

 WTO members have retained substantial flexibility in choosing their import tariffs.

• Purpose of trade agreements

- Purpose of trade agreements
 - Terms-of-trade externality of trade policy

- Purpose of trade agreements
 - Terms-of-trade externality of trade policy
- Need for flexibility

- Purpose of trade agreements
 - Terms-of-trade externality of trade policy
- Need for flexibility
 - Uncertain political-economy conditions

- Purpose of trade agreements
 - Terms-of-trade externality of trade policy
- Need for flexibility
 - Uncertain political-economy conditions
- Alternative flexibility mechanisms:

- Purpose of trade agreements
 - Terms-of-trade externality of trade policy
- Need for flexibility
 - Uncertain political-economy conditions
- Alternative flexibility mechanisms:
 - Weak Tariff Bindings

- Purpose of trade agreements
 - Terms-of-trade externality of trade policy
- Need for flexibility
 - Uncertain political-economy conditions
- Alternative flexibility mechanisms:
 - Weak Tariff Bindings
 - Contingent Protection (requires state verification, e.g.:Safeguards and Antidumping)

- Purpose of trade agreements
 - Terms-of-trade externality of trade policy
- Need for flexibility
 - Uncertain political-economy conditions
- Alternative flexibility mechanisms:
 - Weak Tariff Bindings
 - Contingent Protection (requires state verification, e.g.:Safeguards and Antidumping)
 - Liability System (break and compensate; e.g.: GATT escape clause)

• Larger countries: larger terms-of-trade externality

- Larger countries: larger terms-of-trade externality
 - Unilateral trade policy in larger countries is more costly for the world.

- Larger countries: larger terms-of-trade externality
 - Unilateral trade policy in larger countries is more costly for the world.
- Asymmetric Tariff Commitments:

- Larger countries: larger terms-of-trade externality
 - Unilateral trade policy in larger countries is more costly for the world.
- Asymmetric Tariff Commitments:
 - Global efficiency requires lower tariff bindings in countries with larger import markets.

Literature on Flexible Trade Agreements

Tariff bindings:

- Bagwell (2009)
- Amador and Bagwell (2010)

Contingent Protection:

- Beshkar (2008, 2010 EER, 2010 JIE)
- Maggi and Staiger (2011 QJE)

Bindings and contingent protection:

- Bagwell and Staiger (2005 JLS)
- Transaction costs:
 - Horn, Maggi and Staiger (2010 AER)
 - Beshkar and Bond (2010)

• Three goods: i = 0, 1, 2. Good 0 is numeraire.

- Three goods: i = 0, 1, 2. Good 0 is numeraire.
- Home (Foreign) country has a measure N (N*) of identical households with a quadratic utility function.

- Three goods: i = 0, 1, 2. Good 0 is numeraire.
- Home (Foreign) country has a measure N (N*) of identical households with a quadratic utility function.
- Home country has comparative disadvantage in good 1.

- Three goods: i = 0, 1, 2. Good 0 is numeraire.
- Home (Foreign) country has a measure N (N*) of identical households with a quadratic utility function.
- Home country has comparative disadvantage in good 1.
- We normalize country sizes such that

$$N=1-N^*=\lambda$$
.

- Three goods: i = 0, 1, 2. Good 0 is numeraire.
- Home (Foreign) country has a measure N (N*) of identical households with a quadratic utility function.
- Home country has comparative disadvantage in good 1.
- We normalize country sizes such that

$$N = 1 - N^* = \lambda$$
.

Supply of good 1:

Home :
$$\lambda p$$
 Foreign : $(1 - \lambda) \beta p^*$. $(\beta > 1)$.

- Three goods: i = 0, 1, 2. Good 0 is numeraire.
- Home (Foreign) country has a measure N (N^*) of identical households with a quadratic utility function.
- Home country has comparative disadvantage in good 1.
- We normalize country sizes such that

$$N=1-N^*=\lambda$$
.

Supply of good 1:

Home :
$$\lambda p$$
 Foreign : $(1 - \lambda) \beta p^*$. $(\beta > 1)$.

Demand for good 1:

Home :
$$\lambda (1-p)$$
 Foregin : $(1-\lambda)(1-p^*)$.

- Three goods: i = 0, 1, 2. Good 0 is numeraire.
- Home (Foreign) country has a measure $N(N^*)$ of identical households with a quadratic utility function.
- Home country has comparative disadvantage in good 1.
- We normalize country sizes such that

$$N=1-N^*=\lambda$$
.

Supply of good 1:

Home :
$$\lambda p$$
 Foreign : $(1 - \lambda) \beta p^*$. $(\beta > 1)$.

Demand for good 1:

Home :
$$\lambda (1-p)$$
 Foregin : $(1-\lambda)(1-p^*)$.

ullet Ad Valorem Import Tariffs, t: $p=p^*\left(1+t
ight)$.

• Governments respond to political pressures.

- Governments respond to political pressures.
- ullet A higher weight (heta>1) is given to the welfare of the import-competing sector.

- Governments respond to political pressures.
- A higher weight $(\theta > 1)$ is given to the welfare of the import-competing sector.
- Importing country's political welfare:

$$V(t;\theta) = C(t,\lambda) + \theta \pi(t,\lambda) + t p^* m(t,\lambda),$$

where, C: consumers' surplus, π : producers' surplus, m: import demand.

- Governments respond to political pressures.
- A higher weight $(\theta > 1)$ is given to the welfare of the import-competing sector.
- Importing country's political welfare:

$$V(t;\theta) = C(t,\lambda) + \theta \pi(t,\lambda) + t p^* m(t,\lambda),$$

where, C: consumers' surplus, π : producers' surplus, m: import demand.

• The exporting country's welfare:

$$V^*(t) = C^*(t,\lambda) + \pi^*(t,\lambda).$$

- Governments respond to political pressures.
- A higher weight $(\theta > 1)$ is given to the welfare of the import-competing sector.
- Importing country's political welfare:

$$V(t;\theta) = C(t,\lambda) + \theta \pi(t,\lambda) + t p^* m(t,\lambda),$$

where, C: consumers' surplus, π : producers' surplus, m: import demand.

• The exporting country's welfare:

$$V^*(t) = C^*(t,\lambda) + \pi^*(t,\lambda).$$

• θ is distributed according to pdf $f(\theta)$ with a compact support of $[\underline{\theta}, \overline{\theta}]$. We assume uniform distribution.

Cooperation vs. Non-Cooperation

Joint welfare:

$$W(t;\theta) = V(t;\theta) + V^*(t)$$

= $W(t;1) + (\theta - 1) \pi(t)$.

Cooperation vs. Non-Cooperation

Joint welfare:

$$W(t;\theta) = V(t;\theta) + V^*(t)$$

= $W(t;1) + (\theta - 1) \pi(t)$.

Non-cooperative vs. Cooperative tariffs:

$$\begin{split} t^{N}\left(\theta\right) &=& \arg\max_{t} V(t;\theta), \\ t^{E}\left(\theta\right) &=& \arg\max_{t} W\left(t;\theta\right), \\ t^{N}\left(\theta\right) &>& t^{E}\left(\theta\right). \end{split}$$

Non-cooperative vs. Cooperative tariffs

Binding vs. Applied Tariffs

Cap-and-Escape (Beshkar and Bond 2010)

• Tariff binding: t^B

- Tariff binding: t^B
- Joint-welfare maximization problem:

$$\max_{t^B} \int_{\underline{\theta}}^{\theta^B} W(t^N(\theta); \theta) f(\theta) d\theta + \int_{\theta^B}^{\overline{\theta}} W(t^B; \theta) f(\theta) d\theta$$

where θ^B is implicitly defined by

$$t^{N}\left(\theta^{B}\right) = t^{B} \text{ if } t^{B} \geq t^{N}\left(\underline{\theta}\right),$$
 $\theta^{B} = \underline{\theta} \text{ otherwise}.$

- Tariff binding: t^B
- Joint-welfare maximization problem:

$$\max_{t^B} \int_{\underline{\theta}}^{\theta^B} W(t^N(\theta); \theta) f(\theta) d\theta + \int_{\theta^B}^{\overline{\theta}} W(t^B; \theta) f(\theta) d\theta$$

where θ^B is implicitly defined by

$$t^{N}\left(\theta^{B}\right) = t^{B} \text{ if } t^{B} \geq t^{N}\left(\underline{\theta}\right),$$
 $\theta^{B} = \underline{\theta} \text{ otherwise}.$

FOC:

$$\underbrace{E[\theta-1|\theta\geq\theta^B]}_{\text{marginal expected political gain}} = \underbrace{-\frac{W_t(t^B,1)}{\pi_t(t^B)}}_{\text{marginal welfare cost}},$$

$$R(\theta^B, \lambda) \equiv -\frac{W_t(t^B, 1)}{\pi_t(t^B)} = \frac{1}{1+\lambda}\theta^B + \left(\frac{\lambda \theta^{\text{max}}}{1+\lambda} - 1\right)$$

• For sufficiently small countries:

- For sufficiently small countries:
 - **Optimal tariff binding** is decreasing in λ and $\frac{1}{\beta}$.

- For sufficiently small countries:
 - Optimal tariff binding is decreasing in λ and $\frac{1}{\beta}$.
 - Probability of **strong binding** is increasing in $\hat{\lambda}$ and $\frac{1}{\hat{\beta}}$.

- For sufficiently small countries:
 - **Optimal tariff binding** is decreasing in λ and $\frac{1}{\beta}$.
 - Probability of **strong binding** is increasing in λ and $\frac{1}{\beta}$.
- An optimal tariff binding agreement among asymmetric countries is asymmetric:

- For sufficiently small countries:
 - **Optimal tariff binding** is decreasing in λ and $\frac{1}{\beta}$.
 - Probability of **strong binding** is increasing in λ and $\frac{1}{\beta}$.
- An optimal tariff binding agreement among asymmetric countries is asymmetric:
 - Countries with more market power should be given less flexibility to set their trade policy.

• W_{ij} : country i's share of world import in sector j.

- W_{ij} : country i's share of world import in sector j.
- Motivation

- W_{ij} : country i's share of world import in sector j.
- Motivation
 - Importer's market power may be measured by $\frac{1}{\varepsilon^W_{ij}}$, the inverse of the elasticity of export faced by the importer.

- W_{ij} : country i's share of world import in sector j.
- Motivation
 - Importer's market power may be measured by $\frac{1}{\varepsilon_{ij}^W}$, the inverse of the elasticity of export faced by the importer.
 - Relationship between export elasticity and import share (assuming constant import demand elasticities across countries):

$$\varepsilon_{ij}^{W} = \left(\varepsilon_{j}^{X} + (1 - W_{ij})\varepsilon_{j}\right) / W_{ij},$$

 ε^X_j : supply elasticity of the exporting country. ε^W_{ii} only varies across countries within a given sector due to differences

in import shares:

$$\frac{\partial \varepsilon_{ij}^W}{\partial W_{ii}} < 0.$$

• Import share is affected by trade policy.

- Import share is affected by trade policy.
- Instruments for W_{ij} (motivated by factor-proportion theories of trade):

- Import share is affected by trade policy.
- Instruments for W_{ij} (motivated by factor-proportion theories of trade):
 - Productive resources of a country (physical capital, natural (agricultural) capital, mineral capital.

- Import share is affected by trade policy.
- Instruments for W_{ij} (motivated by factor-proportion theories of trade):
 - Productive resources of a country (physical capital, natural (agricultural) capital, mineral capital.
 - GDP.

- Import share is affected by trade policy.
- Instruments for W_{ij} (motivated by factor-proportion theories of trade):
 - Productive resources of a country (physical capital, natural (agricultural) capital, mineral capital.
 - GDP.
- ullet Fitted values of W_{ij} found using

- Import share is affected by trade policy.
- Instruments for W_{ij} (motivated by factor-proportion theories of trade):
 - Productive resources of a country (physical capital, natural (agricultural) capital, mineral capital.
 - GDP.
- Fitted values of W_{ij} found using
 - separate regressions for each of 97 sectors.

- Import share is affected by trade policy.
- Instruments for W_{ij} (motivated by factor-proportion theories of trade):
 - Productive resources of a country (physical capital, natural (agricultural) capital, mineral capital.
 - GDP.
- Fitted values of W_{ij} found using
 - separate regressions for each of 97 sectors.
 - OLS and Tobit.

Data

# of Countries	40
# of Sectors	5224 (HS06)
Year	2007
Tariff Data	Bound and MFN Applied Tariff
Economic Data	Import, GDP, per capita GDP
Political Data	Democracy Index
Data Source	WTO, World Bank, UN, EIU
Total Obs.	249,282

Binding Status	# of sectors	Share(%)	Import	Share (%)
Applied Tariff below Binding	117,258	64.7	1.36e + 12	23.8
Strong Binding	29,197	16.1	3.72e + 12	65.0
Unbound	34,810	19.2	6.40e + 11	11.2
Total	181,265	100	7.062 + 12	100

OLS Regression: Optimal Tariff Binding

Variable		
Import ratio (OLS fitted values)	28 (0.07)	
Import ratio (Tobit fitted values)		$^{-1.31}$ (0.12)
Pseudo R-square	0.7325	0.7328
Observations	141,716	141,716

Probit Model: Likelihood of Strong Binding

Variable		
Import ratio (OLS fitted values)	0.31 (0.002)	
Import ratio (Tobit fitted values)		0.51 (0.004)
Pseudo R-square	0.4406	0.4477
Observations	176,526	176,526

• Optimal tariff binding among asymmetric countries.

- Optimal tariff binding among asymmetric countries.
- THEORY. Under an optimal tariff binding agreement, the larger the import market:

- Optimal tariff binding among asymmetric countries.
- THEORY. Under an optimal tariff binding agreement, the larger the import market:
 - The lower the optimal binding

- Optimal tariff binding among asymmetric countries.
- THEORY. Under an optimal tariff binding agreement, the larger the import market:
 - The lower the optimal binding
 - The larger the country, the more likely that tariff binds

- Optimal tariff binding among asymmetric countries.
- THEORY. Under an optimal tariff binding agreement, the larger the import market:
 - The lower the optimal binding
 - The larger the country, the more likely that tariff binds
- EVIDENCE. WTO agreement is significantly asymmetric:

- Optimal tariff binding among asymmetric countries.
- THEORY. Under an optimal tariff binding agreement, the larger the import market:
 - The lower the optimal binding
 - The larger the country, the more likely that tariff binds
- EVIDENCE. WTO agreement is significantly asymmetric:
 - A country's tariff binding in a given sector is negatively correlated with its share of world imports in that sector.

- Optimal tariff binding among asymmetric countries.
- THEORY. Under an optimal tariff binding agreement, the larger the import market:
 - The lower the optimal binding
 - The larger the country, the more likely that tariff binds
- EVIDENCE. WTO agreement is significantly asymmetric:
 - A country's tariff binding in a given sector is negatively correlated with its share of world imports in that sector.
 - Strong binding is more likely in sectors with a higher import share.

- Optimal tariff binding among asymmetric countries.
- THEORY. Under an optimal tariff binding agreement, the larger the import market:
 - The lower the optimal binding
 - The larger the country, the more likely that tariff binds
- EVIDENCE. WTO agreement is significantly asymmetric:
 - A country's tariff binding in a given sector is negatively correlated with its share of world imports in that sector.
 - Strong binding is more likely in sectors with a higher import share.
- In Progress.

- Optimal tariff binding among asymmetric countries.
- THEORY. Under an optimal tariff binding agreement, the larger the import market:
 - The lower the optimal binding
 - The larger the country, the more likely that tariff binds
- EVIDENCE. WTO agreement is significantly asymmetric:
 - A country's tariff binding in a given sector is negatively correlated with its share of world imports in that sector.
 - Strong binding is more likely in sectors with a higher import share.
- In Progress.
 - Using import demand elasticities as an additional explanatory variable.

- Optimal tariff binding among asymmetric countries.
- THEORY. Under an optimal tariff binding agreement, the larger the import market:
 - The lower the optimal binding
 - The larger the country, the more likely that tariff binds
- EVIDENCE. WTO agreement is significantly asymmetric:
 - A country's tariff binding in a given sector is negatively correlated with its share of world imports in that sector.
 - Strong binding is more likely in sectors with a higher import share.
- In Progress.
 - Using import demand elasticities as an additional explanatory variable.
- COMPLEMENTARY WORK. Cap-and-Escape Arrangement (Beshkar and Bond 2010)

Costly State Verification

ullet may be revealed publicly through a state-verification process.

- $oldsymbol{ heta}$ may be revealed publicly through a state-verification process.
- Costly State Verification:

- $oldsymbol{ heta}$ may be revealed publicly through a state-verification process.
- Costly State Verification:
 - Cost of producing evidence by the importing country.

- $oldsymbol{ heta}$ may be revealed publicly through a state-verification process.
- Costly State Verification:
 - Cost of producing evidence by the importing country.
 - Cost of going through the dispute settlement process incurred by all parties.

- $oldsymbol{ heta}$ may be revealed publicly through a state-verification process.
- Costly State Verification:
 - Cost of producing evidence by the importing country.
 - Cost of going through the dispute settlement process incurred by all parties.
 - Independent of the country/industry size.

- $oldsymbol{ heta}$ may be revealed publicly through a state-verification process.
- Costly State Verification:
 - Cost of producing evidence by the importing country.
 - Cost of going through the dispute settlement process incurred by all parties.
 - Independent of the country/industry size.
- If the process is not invoked, t cannot be greater than t^B .

General demand and supply functions

 The marginal deadweight loss for a general supply and demand functions:

$$R(\theta^B) \equiv -\frac{W_t(t^N(\theta^B), 1)}{\pi_t(t^N(\theta^B))} = (\theta^B - 1)(1 + \frac{1}{(1 + \varepsilon^W) t^E(\theta^B)}),$$

where,

$$rac{t^{\mathcal{E}}(heta)}{1+t^{\mathcal{E}}(heta)} = \left(rac{(heta-1)s(p(t))}{m(p(t))arepsilon}
ight)$$
 ,

 ε^W : export supply function faced by the importing country. ε : import demand elasticity.

General demand and supply functions

 The marginal deadweight loss for a general supply and demand functions:

$$R(\theta^B) \equiv -\frac{W_t(t^N(\theta^B), 1)}{\pi_t(t^N(\theta^B))} = (\theta^B - 1)(1 + \frac{1}{(1 + \varepsilon^W) t^E(\theta^B)}),$$

where,

$$rac{t^{\mathcal{E}}(heta)}{1+t^{\mathcal{E}}(heta)} = \left(rac{(heta-1)s(p(t))}{m(p(t))arepsilon}
ight)$$
 ,

 ε^W : export supply function faced by the importing country. ε : import demand elasticity.

• t^B is increasing in ε^W and $\frac{s}{m}$, and decreasing in ε .