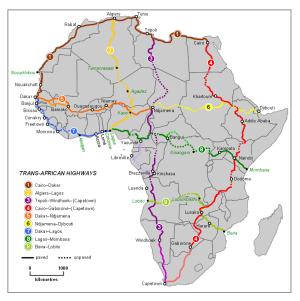
The Heterogeneous Effects of Transportation Infrastructure: Evidence from Sub-Sahara Africa

Remi Jedwab (George Washington University)

> Adam Storeygard (Tufts University)

WORK IN PROGRESS

January 2016


Research Questions

- How has intercity road upgrading affected local economic development in Sub-Saharan Africa?
- What are the implications for current/future road-building efforts?
 - ▶ About 1/5 of World Bank lending on transport, 13% on roads.
 - Large fraction of network still unpaved
 - Trans-African Highway network as coordinating mechanism: 55,000 km of planned highways (vs. 1,000 km of highways in c. 2012).
 - Abidjan-Lagos Motorway: \$8 billion
 - LAPSSET Project in Kenya-Ethiopia-South Sudan: \$22 billion
 - Gauteng-Maputo Development Corridor: \$5 billion

What are the implications for African urbanization?

▶ Expected increase 30% in 2010 to 50% in 2030: which cities?

Effects of Possible Future Highway Networks?

Adam Storeygard (Tufts) The Heterogeneous Effects of Transportation Infrastructure

What We Do

- Build a new panel data set on road surface, city population and market access for 39 Sub-Saharan African countries 1960-2010.
- Estimate the average effects of market access changes (as induced by road surface changes) on city growth.
 - market access is a measure summarizing a city's access to all other cities.
 - a doubling of market access induces a 5–18% increase in city population
 - effect spread up to 30 years after road upgrading

Also investigate the heterogeneous effects of road changes:

Related work

- Highway infrastructure impacts in China, USA, India, Brazil,
- Rail infrastructure impacts in China, USA, India, Ghana, Kenya
- Micro road surface/quality impacts in Sierra Leone (agricultural prices), Indonesia (manufacturing employment), Mexico (household wealth)
- Transport and trade costs in Africa variation from other sources:
 - Fuel prices
 - inferred from price changes of very specific goods
- Our contributions:
 - Scale: 39 countries, 6 time slices over 50 years
 - Timing and heterogeneous effects.
 - Not just building highways: paving and improving (gravelling)

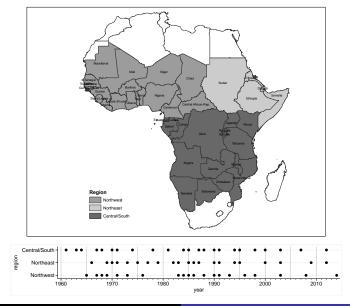
Outline

Data

- Estimation
- Results
- Conclusion

Outline

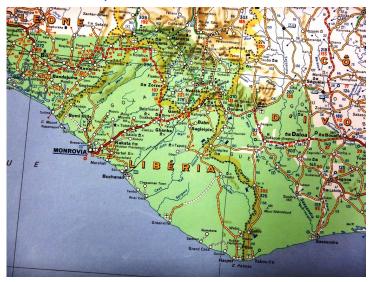
Data


- Estimation
- Results
- Conclusion

Data: Roads

GIS database of roads:

- Michelin paper road maps for 39 Sub-Saharan African countries from the early 1960s to date. Sources:
 - Government maps
 - Feedback from customers (large network of tire distributors and correspondents)
- Map \approx every 3 years, so 833 country-years
- Surface of each road: Highway, Paved, Improved and Dirt (vs. Primary, secondary, tertiary)
- No city streets

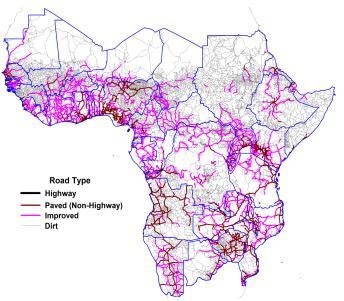

Michelin Road Map Countries and Years

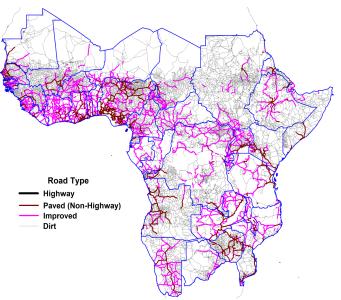
Adam Storeygard (Tufts)

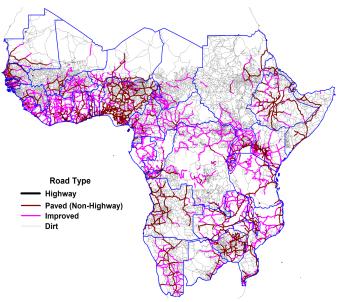
The Heterogeneous Effects of Transportation Infrastructure

Michelin Road Map for Liberia in 1965

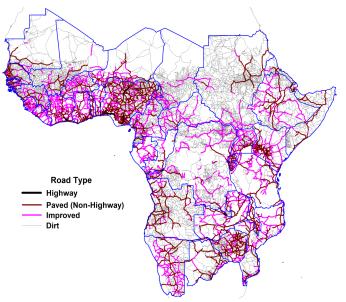
Surfaces aggregated into 4 categories: Highway, Paved, Improved and Dirt

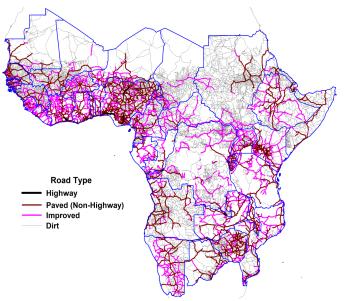

Adam Storeygard (Tufts)

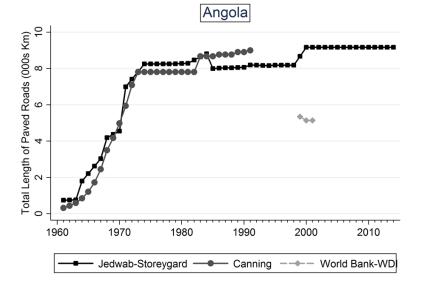

The Heterogeneous Effects of Transportation Infrastructure

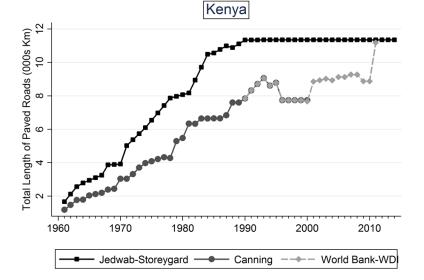

Four Road Surface Categories

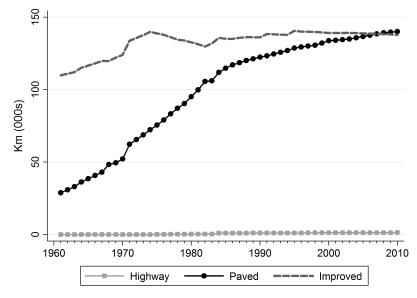


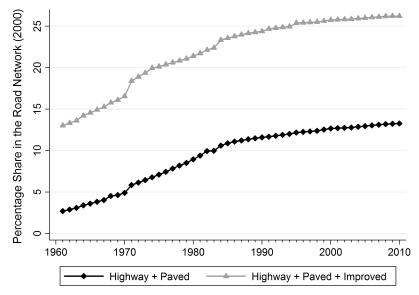

Adam Storeygard (Tufts) The Heterogeneous Effects of Transportation Infrastructure



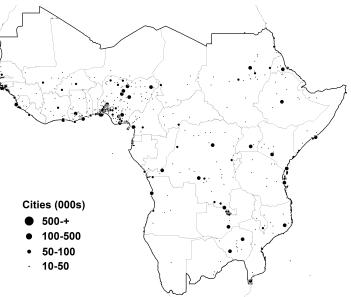


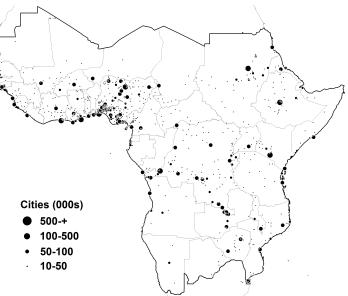


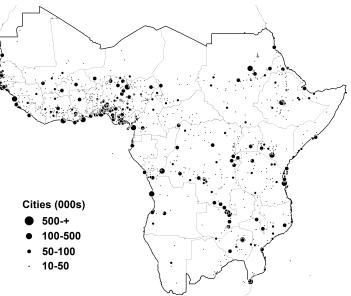

Road Length: Michelin vs. Canning (2008) vs. World Bank

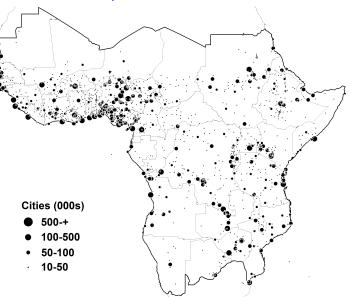

Road Length: Michelin vs. Canning (2008) vs. World Bank

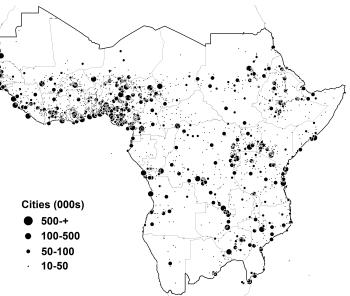
Road Length in Sub-Saharan Africa (39 Countries)

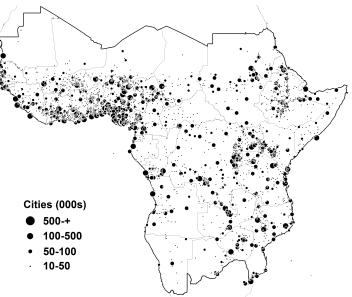

Percentage Share in the Road Network (39 Countries)




Data: Cities


GIS database of cities:


- Population of localities ever above 10,000 inh. for the same 39 countries in 1960, 1970, 1980, 1990, 2000 and 2010
- Proxy for local economic development in the absence of other data (no land prices, no systematic rural populations before c. 1990, no night lights before 1992).
- Sources: Africapolis I and II for 33 countries + Population Census data for 6 countries (similar methodology)



Outline

Data

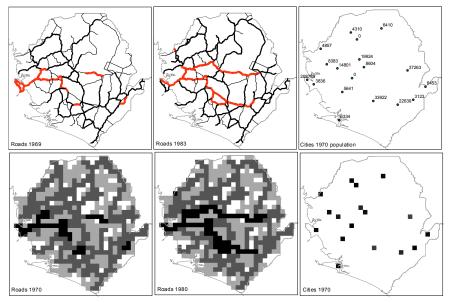
Estimation

Results

Conclusion

Unit of analysis

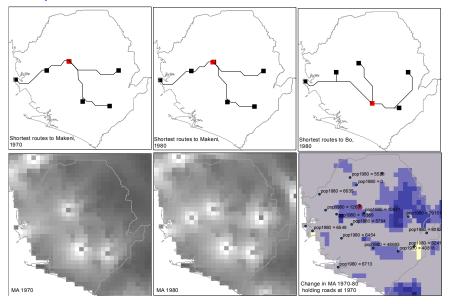
- Grid squares: 0.1x0.1 degree (~11x11 km; computational constraints)
- Select the best (lowest-cost) road in the cell
- Sum of city populations within cell (98 of 2,879 populated cells have multiple cities)


Sample

- Full sample: 5,906 city-years for 2,127 cities (>10,000 in at least two years)
 - 2010: 2,119
 - ▶ 2000: 1,514
 - ▶ 1990: 1,094
 - ▶ 1980: 746
 - 1970: 433
 - 4,725 city-years for 2,126 cities when including two lags

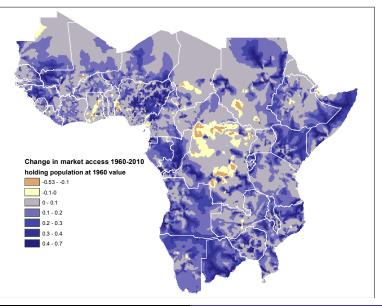
Defining Market Access

- Roads matter beyond the cities they pass through
- First cut: how many people can I reach within a two hour journey from e.g. 1818 H St NW?
 - How many more can I reach if I build a new road or rail?
- Market access generalizes this for concentric rings of travel time:
 - weighted sum of all people outside the city
 - weights decline with travel time (far places count less)
- Building/improving roads increases market access by reducing travel time
 - Building roads to bigger cities increases market access more
- We don't consider congestion (lack of data, conceptual issues)


Example for Sierra Leone, 1970-1980

Adam Storeygard (Tufts)

The Heterogeneous Effects of Transportation Infrastructure


Example for Sierra Leone, 1970-1980

Adam Storeygard (Tufts)

The Heterogeneous Effects of Transportation Infrastructure

Change in market access due to road changes, 1960-2010

Problems with determining causal impacts of road building on city population using market access

- Reverse causality
 - Governments may build roads to places they expect to grow rapidly in the future
 - High growth misattributed to roads (overestimation)
 - Governments may build roads to places they expect to lag
 - Low growth misattributed to roads (underestimation)
- All cities in a region may grow rapidly together for a reason unrelated to roads
 - e..g. a local resource boom drives growth in my city and my neighbors
 - Neighbors' population increases my market access
 - But I don't grow because of my neighbors' growth
- Our indicator of market access may be badly measured

Proposed solutions

- Control for any *national-level* shocks that might be driving road building and city growth in a given decade (country-year fixed effects)
 - e.g. coups
- Control for smoothly varying spatial shocks (year-specific spatial poynomials)
 - e.g. climate
- Control for lagged population
 - mean reversion

Proposed solutions

- Use restricted variation in market access change (instrumental variable)
 - Only changes due to roads, not population
 - Only changes to roads "far" away from the city in question
 - more than 50 km; more than 100 km;
 - outside country
 - example: Lagos-Ibadan road (Nigeria) affects market access for Cotonou (Benin)
 - valid if these "far" away roads are built for reasons unrelated to the city in question

Outline

Data

Estimation

Results

Conclusion

Introduction Data Estimation Conclusion Estimation

	(1)	(2)	(3)	(4)	(5)				
Dep. variable:	$(\Delta_{t-10}^t \ln \text{ urban population})/100$								
$\Delta_{t-10}^t \ln MA$		1.27***	1.58***	1.63***					
1 10	[0.32]	[0.32]	[0.35]	[0.44]					
$\Delta_{t-20}^{t-10} \ln MA$		1.02^{***}							
		[0.24]	[0.26]	[0.34]					
$\Delta_{t-30}^{t-20} \ln MA$			0.81***						
			[0.23]	[0.29]	[0.27]				
$\Delta_{t-40}^{t-30} \ln MA$				0.27					
				[0.23]					
$\Delta_t^{t+10} \ln MA$					0.67				
					[0.49]				
Overall effect	1.34^{***}	2.29^{***}	3.62***	4.33***	3.40^{***}				
(t - 40 to t)	[0.32]	[0.45]	[0.59]	[0.83]	[0.65]				
Observations	5,906	$5,\!472$	4,725	$3,\!630$	$2,\!607$				
Adj. R-squared	0.26	0.22	0.19	0.18	0.22				
Notes: Each col	umn is a	separate C	DLS regres	sion of Δ	ln urban				
Adam Storeygard (Tufts) The Heterogeneous Effects of Transportation Infrast									

	(1)	(2) Control:	(3)	(4)	(5) Instrumental	(6) variable (IV)	(7)	(8)
		Own cost	Exclude 5	Exclude 10	Exclude 15	Exclude 20	Foreign	Non-neighbor
Δ_{t-10}^t MA	1.58***	1.52***	2.98***	4.59***	5.75*	7.22*	1.79	8.43*
	[0.35]	[0.39]	[1.00]	[1.76]	[2.95]	[4.09]	[1.89]	[4.60]
Δ_{t-20}^{t-10} MA	1.23^{***}	1.24***	3.28^{***}	5.76^{***}	7.34***	9.01***	1.73	-2.49
	[0.26]	[0.29]	[0.87]	[1.59]	[2.46]	[3.13]	[1.43]	[2.66]
Δ_{t-30}^{t-20} MA	0.81***	0.83***	2.57***	3.38**	4.60**	4.07**	1.09	2.06
	[0.23]	[0.24]	[0.86]	[1.39]	[1.95]	[1.92]	[1.12]	[1.70]
Overall effect	3.62***	3.58***	8.83***	13.74***	17.69***	20.30***	4.61*	8.00*
(t - 30 to t)	[0.59]	[0.65]	[1.89]	[3.31]	[4.64]	[5.77]	[2.38]	[4.82]
IV F-Stat			114	41.86	17.41	6.940	15.10	4.026

Table 4: Market access and urban population: additional controls and instrumental variables, 1960–2010

Summary of Average Effects

- ► Naive effect of a 100% change in market access: ≈ 1% 1.5% per decade for three decades (total 30-year effect: 3-4%).
- Better identified effect: \approx 5–18% over 30 years.
- Concentrated in first two decades (i.e. decade of construction and following decade)
- No measurable effect in fourth decade.
- Source of growth: rural areas or other cities? To be considered...

Comparison to literature

- Somewhat smaller than railroads in the 19th century US using similar method (Donaldson & Hornbeck 2015): ~20-35%.
- Other contexts are too
- Contextual differences:
 - Not a transportation revolution like in the 19th century US. Railroads already existed in Africa before roads (and poor roads existed before good roads).
 - Migration costs likely higher at least for large distances.
 - Context of lower economic growth.

Heterogeneous Effects?

- Heterogenous effects? Focusing on space right now.
- We classify the cities into two groups depending on:
 - High vs. low initial city size
 - High vs. low initial market access
 - ► Near vs. far from coast, borders, largest cities

etc.

and see if the effect of a same change in road market access varies across the two groups.

This will allow us to test various existing theories in trade and urban economics.

Heterogeneous Effects?

- No consistent robust effects for any of them
- Instruments get weaker.
- Still work in progress

Conclusion

- Study the effects of road construction and market access on city population growth in Sub-Saharan Africa in 1960-2010.
- New panel data set on road surface and city population for 39 African countries every ten years in 1960-2010.
- ► Average effect of a 100% change in market access ≈ 5-18%. Effect concentrated in first 3 decades.
- Still exploring the heterogeneous spatial and temporal effects of the same road investments.