The Geography of Development: Evaluating Migration Restrictions and Coastal Flooding

Klaus Desmet SMU

Dávid Krisztián Nagy Princeton University

Esteban Rossi-Hansberg Princeton University

World Bank, February 2016

Space, Development and Growth

- Growth economists tend to ignore the economy's spatial distribution
 - ▶ They focus on aggregate variables
- Economic geographers tend to ignore the aggregate effects of space
 - ► They tend to focus on local growth dynamics
- There are important links between space and aggregate growth
 - ► It is intuitive to think that a country's spatial distribution of economic activity should affect its aggregate growth rate
- This paper:
 - ► Tractable theory of development that takes into account geography
 - Bring theory to the data and do counterfactual experiments

Usefulness to Policy Makers: Examples

- Migration policy affects the spatial distribution of economic activity
 - ► Liberalizing migration restrictions affects where people live
 - Where people live today determines where growth happens tomorrow
 - ► Quantitative models are needed to evaluate these complex questions
- Spatial shocks such as climate change
 - ► Climate change will affect different places differently
 - ► This will affect where people will live and where growth will occur
 - ► Again, the sheer complexity of these questions require models
- Evaluating infrastructure investments
 - ► Improving road infrastructure in one region affects other regions
 - ► An interstate highway system can take many shapes and forms
 - ► General equilibrium models are needed to evaluate their global effects

A Theory of the Geography of Development

- Each location is unique in terms of its
 - Amenities
 - ► Productivity
 - Geography
- Each location has firms that
 - Produce and trade subject to transport costs
 - Innovate
- Static part of model
 - ► Allen and Arkolakis (2013) and Eaton and Kortum (2002)
 - Allow for migration restrictions
- Dynamic part of model
 - ► Desmet and Rossi-Hansberg (2014)
 - ► Land competition and technological diffusion

Endowments and Preferences

- Economy occupies a two-dimensional surface S
- \bullet \bar{L} agents, each supply one unit of labor
- An agent's period utility

$$u_{t}(r) = a_{t}(r) \left[\int_{0}^{1} c_{t}^{\omega}(r)^{\rho} d\omega \right]^{\frac{1}{\rho}}$$

where amenities take the form

$$a_{t}\left(r\right) = \overline{a}\left(r\right)\overline{L}_{t}\left(r\right)^{-\lambda}$$

Congestion through amenities: dispersion force

Agents earn income from work and from local ownership of land

Technology

ullet Production per unit of land of a firm producing good ω

$$q_t^{\omega}(r) = \phi_t^{\omega}(r)^{\gamma_1} z_t^{\omega}(r) L_t^{\omega}(r)^{\mu}$$

- Productivity depends on decision to innovate
 - ▶ Invest $\nu\phi_t^{\omega}\left(r\right)^{\xi}$ units of labor to get innovation $\phi_t^{\omega}\left(r\right)$
 - ► Agglomeration force
- Productivity depends on random draw
 - $ightharpoonup z_t^\omega\left(r
 ight)$ is the realization of a r.v. drawn from a Fréchet distribution
 - Average draw is increasing in
 - ★ population density: agglomeration force
 - ★ past innovation: avoids stagnation
 - ★ productivity of other locations: dispersion force

Productivity Draws and Competition

- Productivity draws are i.i.d. across goods, but correlated across space (with perfect correlation as distance goes to zero)
- Firms face perfect local competition and innovate
 - ► Firms bid for land up to point of making zero profits after covering investment in technology
- Next period all potential entrants have access to same technology
 - Dynamic profit maximization simplifies to sequence of static problems
- Because of perfect competition, many of the results of EK apply
 - ► The probability that a good produced in *r* is sold in *s* is the same as the share of goods of *r* sold in *s*
- Firms trade subject to transport costs

Equilibrium: Existence and Uniqueness

- Standard definition of dynamic competitive equilibrium
- Equilibrium implies

$$\begin{split} & \left[\frac{\overline{a}\left(r\right)}{\overline{u}\left(c\right)}\right]^{-\frac{\theta\left(1+\theta\right)}{1+2\theta}} \tau_{t}\left(r\right)^{-\frac{\theta}{1+2\theta}} H\left(r\right)^{\frac{\theta}{1+2\theta}} \overline{L}_{t}\left(r\right)^{\lambda\theta-\frac{\theta}{1+2\theta}\chi} \\ & = & \left[\overline{u}_{t}^{W}\right]^{-\theta} \kappa_{1} \sum_{d=1}^{C} \int_{S_{d}} \left[\frac{\overline{a}\left(s\right)}{\overline{u}\left(d\right)}\right]^{\frac{\theta^{2}}{1+2\theta}} \tau_{t}\left(s\right)^{\frac{1+\theta}{1+2\theta}} H\left(s\right)^{\frac{\theta}{1+2\theta}} \varsigma\left(r,s\right)^{-\theta} \overline{L}_{t}\left(s\right)^{1-\lambda\theta+\frac{1+\theta}{1+2\theta}\chi} ds \end{split}$$

An equilibrium exists and is unique if

$$\frac{\alpha}{\theta} + \frac{\gamma_1}{\xi} \le \lambda + 1 - \mu$$

- ▶ Congestion from land (1μ) and amenities (λ)
- Agglomeration economies from market size on average productivity draw (α/θ) and innovation (γ_1/ξ)
- ► Congestion forces should be greater than agglomeration economies

Balanced Growth Path

- In a balanced growth path (BGP) the spatial distribution of employment is constant and all locations grow at the same rate
- There exists a unique BGP if

$$\frac{\alpha}{\theta} + \frac{\gamma_1}{\xi} + \frac{\gamma_1}{[1 - \gamma_2] \, \xi} \le \lambda + 1 - \mu$$

- ► Stronger than the condition for uniqueness and existence of the equilibrium because of dynamic agglomeration economies
- In a BGP aggregate welfare and real consumption grow according to

$$\frac{\bar{u}_{t+1}^{W}}{\bar{u}_{t}^{W}} = \left[\frac{\int_{0}^{1} c_{t+1}^{\omega}\left(r\right)^{\rho} d\omega}{\int_{0}^{1} c_{t}^{\omega}\left(r\right)^{\rho} d\omega}\right]^{\frac{1}{\rho}} = \eta^{\frac{1-\gamma_{2}}{\theta}} \left[\frac{\gamma_{1}/\nu}{\gamma_{1}+\mu\xi}\right]^{\frac{\gamma_{1}}{\xi}} \left[\int_{\mathcal{S}} \overline{L}\left(s\right)^{\frac{\theta\gamma_{1}}{[1-\gamma_{2}]\xi}} ds\right]^{\frac{1-\gamma_{2}}{\theta}}$$

► Growth depends on population size and its distribution in space

Calibration: Parameter Values

- Use relation between geographic distribution of population and aggregate growth across countries to estimate technology parameters
- Use relationship between productivity and amenities in the U.S. to estimate congestion costs
- Transport costs use evidence on seas, rivers, lakes, highways, trains, and geographic characteristics
 - ▶ 64,800 by 64,800 bilateral transport cost matrix
- Other parameter values come from the literature

Simulation: Amenities and Productivity

- Discretize the world into 1° by 1° cells (64,800 in total)
- Use data on land, population and wages from G-Econ and data on bilateral transport costs to derive spatial distribution of productivity and $\overline{a}(r)/\overline{u}(c)$
- Does not separately identify $\overline{a}(r)$ and $\overline{u}(c)$
 - ▶ Not a problem in models with free mobility (Roback, 1982)
 - ▶ Not reasonable here: Congo would have very attractive amenities
- We need additional data on utility: subjective well-being
 - ► Map subjective well-being
 - ► Correlates well with log of income (Kahneman and Deaton, 2010)
 - Transform subjective well-being into utility measure that is linear in the level of income

Benchmark Calibration: Results from Inversion

a. Fundamental Productivities: $\tau_0\left(r\right)$

b. Fundamental Amenities: $\overline{a}(r)$

► Correlation amenities

Benchmark Calibration: Period 1

a. Population Density

c. Amenities: $\overline{a}(r)\overline{L_t(r)}^{\frac{20}{20}}$

b. Productivity: $\left[\tau_{t}\left(r\right)\overline{L}_{t}\left(r\right)^{\alpha}\right]^{\frac{1}{\theta}}$

d. Real Income per Capita

Keeping Migratory Restrictions Unchanged: Period 600

Free Mobility: Period 1

a. Population Density

c. Amenities: $\overline{a}(r)\overline{L_t(r)}^{\frac{20}{200}}$

b. Productivity: $\left[\tau_{t}\left(r\right) \overline{L}_{t}\left(r\right) ^{lpha} \right] ^{\frac{1}{ ilde{ heta}}}$

d. Real Income per Capita

Free Mobility: Period 600

a. Population Density

c. Amenities: $\overline{a}(r)\overline{L_t(r)}^{\frac{20}{200}}$

b. Productivity: $\left[\tau_{t}\left(r\right)\overline{L}_{t}\left(r\right)^{\alpha}\right]^{\frac{1}{\theta}}$

d. Real Income per Capita

Welfare and Migratory Restrictions

Mobility	Discounted Real Income*	Discounted Utility**	Migration Flows***
ψ	$\%\Delta$ w.r.t. $\psi = 0$	$\%\Delta$ w.r.t. $\psi=0$	
0.0^{a}	0%	0%	0.74%
0.3	3.5%	71%	24.5%
0.5	13.9%	131%	42.0%
0.9	39.8%	244%	65.0%
1.3	56.2%	298%	73.9%
1.8^{b}	68.6%	312%	78.2%

We use $\beta=0.95$. a: Observed Restrictions. b: Free Mobility. *: Normalized by world average for t=1. **: Population-weighted average of cells' utility levels. ***: Share of world population moving to countries that grow between period 0 and 1 (immediately after the change in ψ).

Rise in Sea Levels

- The rise in sea level is a major consequence of global warming
 - ► Thermal expansion of the oceans
 - Melting of glaciers and depletion of ice sheets
 - ► Next millennium expected rise by 7 meters
 - ★ Likely increase by 0.5 to 1 meter by 2100 (IPCC)
- Disproportionate part of the world's population lives in coastal areas
- Existing literature
 - ► Accounting exercises based on current data (Dasgupta et al., 2007)
 - Studies contemplating different future scenarios (Nicholls, 2004)
- Here: dynamic analysis of rise in sea level by 6 meters

Population Flooded based on Today's Population

Dynamic Effects of Flooding

Mobility	Discounted Present Value of Real Income*	Welfare**
ψ	Ratio (NF/F)	Ratio (NF/F)
0.0^{a}	1.037	1.082
0.3	1.028	1.079
0.5	1.021	1.075
0.9	1.016	1.072
1.3	1.024	1.076
1.8^{b}	1.037	1.078

We use $\beta = 0.95$. a: Observed Restrictions. b: Free Mobility.

► Sea level rise by 1 mete

^{*:} Normalized by world average GDP without flooding for t = 1.

^{**:} Population-weighted average of cells' utility levels.

Dynamic Effects of Flooding

- Flooding reduces real income by 1.6% 3.7%
- It reduces welfare by 7.2% 8.2%
 - Loss in amenities due to flooding are large
- In PDV mobility has little effect on the welfare impact of flooding
- We would have expected mobility to mitigate negative effects
 - Mobility moves more people to coastal areas
 - ▶ People move to places that are individually, not socially, beneficial
 - ▶ Local migration argument no longer works with complex geography

Conclusion

- Interaction between geography and economic development through trade, technology diffusion and migration
- Connect to real geography of the world at fine detail
- Relaxing migration restrictions can lead to very large welfare gains
- Level of migration restrictions will have important effect on which regions of the world will be the productivity leaders of the future
- Coastal flooding will have important welfare effects
 - Mobility has little effect on the welfare effect of flooding

Map Subjective Well-Being

Subjective Well-being from the Gallup World Poll (Max = 10, Min = 0)

Correlation Amenities

Correlations with Estimated Amenities (logs)					
	(1) All cells	(2) U.S.	(3) One cell per country	(4) Placebo of (1)	(5) Placebo of (3)
A. Water Water < 50 km	0.2198***	0.1286***	0.1232**	0.1064***	-0.1363**
B. Elevation Level Standard deviation	-0.4152*** -0.4599***	-0.1493*** -0.2573***	-0.2816*** -0.3099***	-0.2793*** -0.3285***	0.1283** 0.1121*
C. Precipation Average Maximum Minimum	0.4176*** 0.4408*** 0.2035***	0.08643*** 0.1068*** 0.2136***	0.3851*** 0.3128*** 0.2108***	0.3185*** 0.4286*** -0.0096	0.1830*** 0.3200*** -0.1965**
Standard deviation D. Temperature	0.4160***	0.0212	0.2746***	0.4715***	0.4535***
Average Maximum	0.6241*** 0.5447***	0.6928*** 0.7388***	0.3087*** 0.1276***	0.6914*** 0.6589***	0.5692*** 0.4635***
Minimum Standard deviation	0.6128*** -0.5587***	0.6060*** -0.3112***	0.2931*** -0.3313***	0.6565*** -0.5539***	0.5389*** -0.3679***
E. Vegetation Desert, ice or tundra	-0.3201***	-0.3993***	-0.1827***	-0.2440***	-0.1291*

- Correlations using all cells, U.S. cells, or one cell per country are similar (see (1), (2) and (3))
 - ► Also consistent with Albouy et al. (2014) and Morris & Ortalo-Magné (2007)
- Placebo correlations under free mobility are not (see (2), (4) and (5))

Population Density and Income

Correlation between population density and real income per capita

- Across all cells of the world: -0.38
- Weighted average across cells within countries: 0.10
- Across richest and poorest cells of the world
 - ▶ 50% poorest cells: -0.02
 - ▶ 50% richest cells: 0.10
- Weighted average across richest and poorest cells within countries
 - ▶ 50% poorest cells: 0.14
 - ▶ 50% richest cells: 0.23
- Across cells of different regions
 - ► Africa: -0.04
 - ► Asia: 0.06
 - ► Latin America and Caribbean: 0.14
 - ► Europe: 0.15 (Western Europe: 0.20)
 - ▶ North America: 0.28
 - ► Australia and New Zealand: 0.48 (Oceania: -0.08)

Changing Relation between Population Density and Income

- Correlation between population density and income today is -0.4
- Model predicts that this correlation should increase with income
 - ► Dynamic agglomeration economies greater in high-productivity places
 - ► Mobility
- Consistent with evidence from U.S. zip codes

Correlation between Population Density and Per Capita Income (logs)*

Year	< 25th	25-50th	50th-75th	>75th	< Median	\geq Median
2000	-0.1001***	0.0495***	0.1499***	0.2248***	-0.0609***	0.3589***
2007-2011	-0.0930***	0.0175	0.0733***	0.2420***	-0.0781***	0.3234***

^{*}Percentiles based on per capita income

Also holds across zip codes within CBSAs

Rise in Sea Level by 1 Meter

- We consider rise in sea levels that flood 0.4% of land
- On-impact flooding of population for sea level rise today
 - ▶ 1 meter: 1.6% (with restrictions) and 5.5% (free mobility)
 - ▶ 6 meters: 6.6% (with restrictions) and 11.2% (free mobility)
- Effects are smaller, but less than proportionally so

Dynamic Effects of Rise in Sea Level by 1 Meter

Mobility	Discounted Present Value of Real Income*	Welfare**
ψ	Ratio (NF/F)	Ratio (NF/F)
0.0^{a}	1.011	1.036
0.3	1.011	1.040
0.5	1.010	1.041
0.9	1.008	1.041
1.3	1.012	1.039
1.8 ^b	1.014	1.034

We use $\beta = 0.95$. a: Observed Restrictions. b: Free Mobility.

^{*:} Normalized by world average GDP without flooding for t = 1.

^{**:} Population-weighted average of cells' utility levels.