
EMPIRICAL EVIDENCE ON THE AGGREGATE IMPACTS OF WARMING

Marshall Burke

Dept. of Earth System Science, Stanford University National Bureau of Economic Research

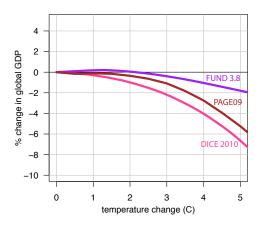
World Bank - GWU Climate Change Workshop, Nov 2021

[with thanks to Sol Hsiang, Ted Miguel, Noah Diffenbaugh, Matt Davis, Vincent Tanutama]

We know a lot at the "micro" level

But how do these effects aggregate?

Two approaches to generate an aggregate "damage function"


(1) Bottom up: convert micro estimates to \$, add them up somehow

But how do these effects aggregate?

Two approaches to generate an aggregate "damage function"

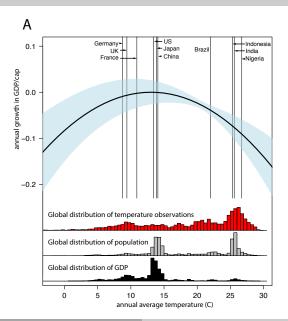
- Bottom up: convert micro estimates to \$, add them up somehow
- 2 Top down: let economy do adding up for you, study effect on economic aggregates (e.g. GDP)

Damage functions we have known

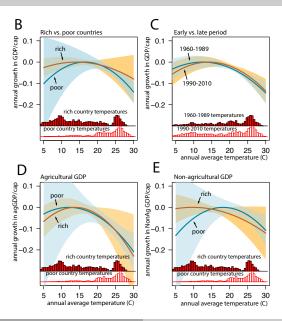
- Pindyck (JEL, 2013): "The damage functions used in most IAMs are completely made up, with no theoretical or empirical foundation."
- Revesz, Arrow, Goulder et al (Nature, 2014): "The models should be revised more frequently to accommodate scientific developments."

Burke et al *Nature* (2015, 2018)

Approach: study effect of temperature on aggregate economic outcomes using country-level data (165 countries, 50 years).

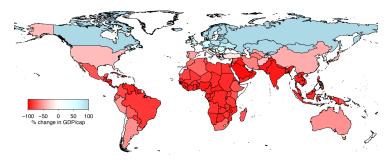

Estimate:

$$\Delta Y_{it} = g(T_{it}) + \lambda_1 P_{it} + \lambda_2 P_{it}^2 + \mu_i + \gamma_t + \theta_i t + \theta_{i2} t^2 + \varepsilon_{it}$$
 (1)

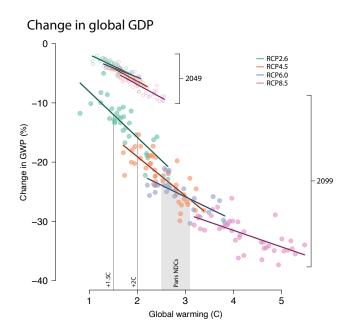

What this does

- uses within-country variation over time, detrended
- allows within-county effect to vary as a function of average temperature

Last half-century: global non-linear response



Differences over space or time?


Country-level damages under high warming

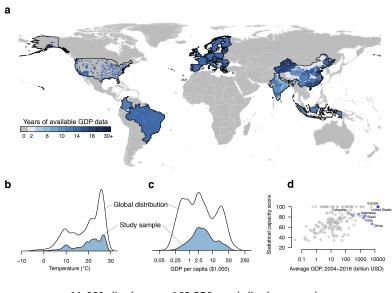
Change in GDP/cap by 2100, relative to world without climate change

>75% of countries are worse off in relative terms

Now heroically run the world forward

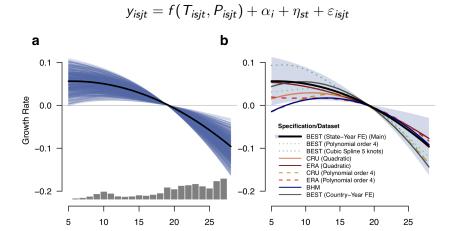
Can this be right??

Estimates are 5-10x larger that IAM damage estimates.

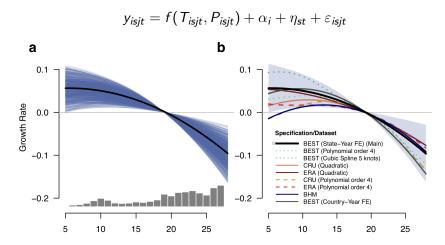

Can this be right??

Estimates are 5-10x larger that IAM damage estimates.

Some common complaints:

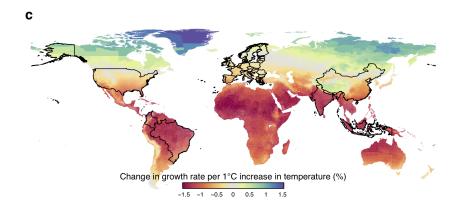

- Not convinced growth rates are affected
- We can't trust national accounts data from lots of places
- Effects could differ within countries as well as between them

Let's try it with subnational output data

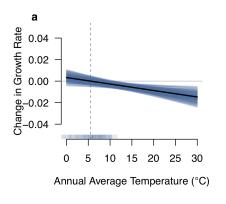


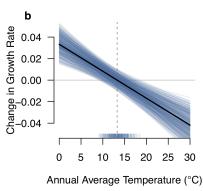
11,669 districts, n=162,256 total district-year obs

Pooled response, all districts



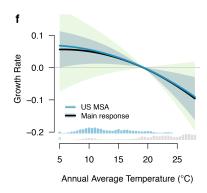
Pooled response, all districts


Estimated optimum is \sim 5C (compare 13C in Burke et al 2015, 2018).


Implies that most of world harmed by warming

Growth effects?

Since DJO 2012, estimate distributed lag models, add up lags. (Can also estimate a "long difference")



Will development save us?

No strong evidence for differential effects by income, at a given temperature

Conclusions

Non-linear effect of temperature on historical output

- No strong evidence that structure of economy mitigates these effects
- No strong evidence of adaptation over time
- No strong evidence that wealth insulates us
- Similar response in national and subnational data, and strong evidence for growth effects

2 High likelihood of substantial losses under future climate change

- Loss estimates are much larger than in existing damage functions, 5-10x
- This is just from taking historical aggregate data seriously
- We ignore or downplay large aggregate impacts at our peril, even if we can't fully explain or understand them.
 - They are robustly "in" the data
 - Micro-founded estimates that do not match macro "moments" should be treated with care