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Economic consequences of global phenomona

Global phenomena often produce heterogeneous local impacts

In some cases, heterogeneity exhibits spatial correlation: neighboring locations

experience similar impacts

Sometimes called the “first law of geography” (Tobler, 1970)

Examples of global events with spatially correlated outcomes:

Great Recession (Piskorski and Seru, 2018)

Global food price shocks (McGuirk and Burke, 2020)

Global pandemics (Barro et al., 2020; Dong et al., 2020)



Prime example: anthropogenic climate change

Spatially correlated footprint of local impacts

Larger losses in tropics

Smaller losses (or gains) in temperate latitudes



Prime example: anthropogenic climate change

A full account of global climate impacts requires estimating:

1 local productivity effects (i.e. partial equilibrium)

2 global trade effects (i.e. general equilibrium)



Contrasting approaches to understanding climate change

Quasi-experimental estimates

Relate local temperature to local outcomes, ignoring temperatures elsewhere

Projected global CC impact: sum of each location’s impact under isolated

warming

What if Kenya warmed by itself, ignoring concurrent warming in Congo,

Ethiopia, or Sweden?

Structural models

Use a GE model of global economy to forecast economic outcomes

Typically relies on numerous functional-form assumptions

Our approach

Incorporate spatial linkages in climate-impact projections using

quasi-experimental variation without imposing full structure of quantitative

trade models



Overview: Paper in 3 parts

1 Theoretically demonstrate that increasing spatial correlation of productivities

increases global welfare inequality across a trading network

2 Empirically validate general-equilibrium prediction by examining the last five

decades of global agricultural trade driven by a global climatic phenomenon

3 Augment typical quasi-experimental climate-impact projections to include

this general-equilibrium effect



Part 1: Theory

In many trade models, a country gains more from trade when partners are

1 more productive, and

2 physically closer

Increased spatial correlation makes neighbors more similar:

high productivity countries gain more from trade by being near other high

productivity countries

low productivity countries gain less from trade by being near other low

productivity countries

Implication:

Greater spatial correlation of productivities can increase global welfare

inequality



Part 2: Empirical validation

Challenges with identifying a global GE effect

Prediction about a counterfactual for the entire global economy

Need exogenous variation affecting spatial structure of productivities at a

global scale

Our solution:

Global natural experiment: El Niño-Southern Oscillation (ENSO)

ENSO alters local temperatures in a way that increases global spatial

correlation in agricultural productivity, holding mean and variance fixed.



Part 2: Empirical validation

Over 1961-2013, 1 s.d. increase in spatial correlation of agricultural

productivities → 2% increase in welfare variance



Part 3: Climate change application

Incorporate GE mechanism into typical quasi-experimental climate-impact

forecast without imposing full structure of trade model

20% greater change in global welfare inequality by 2099 under climate change

when including changes to spatial correlation in agricultural productivity

Higher losses in most African countries



Related work

Geography

Local natural resources associated with local outcomes (Sachs and Warner, 1997;

Easterly and Levine, 2003), via productivity (Nordhaus, 2006; Bleakley, 2007),

institutions (Nunn and Puga, 2012), investments (Burchfield et al., 2006)

International trade

We articulate and empirically examine role of spatial correlation using Arkolakis,

Costinot and Rodŕıguez-Clare (2012) sufficient statistic for gains from trade

Costinot, Donaldson and Smith (2016) examine consequences of predicted shifts in

comparative advantage across different crops due to climate change

Inequality under climate change

Bring reduced-form climate impacts lit. (Dell, Jones and Olken, 2012; Burke,

Hsiang and Miguel, 2015; Burgess et al., 2014; Houser et al., 2015) conceptually

closer to macro/GE approaches (Brock, Engström and Xepapadeas, 2014; Desmet

and Rossi-Hansberg, 2015; Krusell and Smith, 2016; Costinot, Donaldson and

Smith, 2016)



1 Theoretical framework

2 The El Niño-Southern Oscillation

3 Estimation results

4 Application: Inequality under future climate change

5 Conclusions



Theoretical framework



Welfare variance across a trading network

Welfare = autarky welfare + gains from trade

In a broad class of trade models (Arkolakis, Costinot and Rodŕıguez-Clare, 2012):
ACR primitives

ln (Ci/Li )︸ ︷︷ ︸
welfare

= lnAi︸︷︷︸
productivity

+ γ︸︷︷︸
micro−foundation︸ ︷︷ ︸

autarky welfare

− 1

ε︸︷︷︸
trade elasticity

lnλii︸︷︷︸
domestic share︸ ︷︷ ︸

gains from trade

Global welfare variance across countries:

var (ln (Ci/Li )) = var (lnAi ) +2cov
(
lnAi ,

−1
ε lnλii

)
+

1

ε2
var (lnλii )



Spatial correlation and welfare variance

How does spatial correlation affect cov
(

ln Ai,
−1
ε

lnλii

)
?

A country gains more from trade when trading partners are more productive

Distance-related trade costs → larger gains when more productive partners

are closer

Neighbors more similar under greater spatial correlation:

I high productivity countries gain more from trade by being near other high

productivity countries

I low productivity countries gain less from trade by being near other low

productivity countries

Greater spatial correlation raises inequality by increasing cov
(
lnAi ,

−1
ε lnλii

)
Greater spatial correlation reduces cov (lnAi , lnλii )



Sine-wave circular economy with uniform countries



Sine-wave circular economy with uniform countries



Sine-wave circular economy with uniform countries
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From theory to empirics

lnλiit = β0 lnAit + β1 lnAit It + πI
i + πT

t + εit

Theoretical extensions and empirical implications
1 Many states, many heterogeneous countries

Implication: Panel estimator with year and country fixed effects

2 Arbitrary productivity distributions

Implication: Spatial correlation captured by Moran’s I

I =
∑
i

∑
j 6=i

ωij (xi − x) (xj − x) , ωij ∝
1

distanceij

3 Simulated model with realistic geography

Implication: Effect is linear in Moran’s I

4 Multiple sectors

Implication: 1-sector effect is upper bound on total wefare effect



From theory to empirics

Remaining identification challenge

Productivity may still be endogenous to expenditure shares if unobserved:

1 trade cost shocks affect imported intermediate goods

2 demand shocks elicit supply responses

Ideal (impossible) experiment: exogenously reshuffle global productivities to

alter its spatial correlation

Solution: a global natural experiment

El Niño-Southern Oscillation (ENSO)



The El Niño-Southern Oscillation (ENSO)



What is ENSO?
Dominant natural year-to-year driver of the global climate

Quasi-periodic (3-7 years) release of heat from the tropical Pacific driven by

instabilities in the coupled ocean-atmosphere circulation



ENSO index

Summarized by avg. sea surface temp. in tropical Pacific Ocean ENSO index map

Peaks in December Top 10 ENSO events

Sample period
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Notes: Monthly ENSO index during 1856-2013. Shaded area shows 1961-2013 sample period.



Timing of ENSO’s local temperature effects

Notes: Each panel shows pixel-level (0.5◦ latitude by 0.5◦ longitude resolution) correlation between the ENSO

index in December and pixel-level monthly temperatures for 11 months before (lead) and 12 months after (lag)

December. Blue shows areas with negative correlation. Red shows areas with positive correlation.



ENSO and Moran’s I for yields
coef=0.005, se=0.002, R2=0.12
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ENSO and cross-sectional moments of cereal yields

β=-0.010, se=0.029, R2=0.001
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Estimation results



Estimating the effect of spatial correlation

Estimating equation:

lnλiit = β0 lnAit + β1 lnAit It + Π′Zit + µit

Panel over country i (158) and year t (1961-2013)

λiit : FAOStat (cereal consumption [output minus export] × export unit value)

Ait : FAOStat (cereals yield in metric tons per hectare)

Zit : Country FE, time FE, and i-specific linear trend

µit : year clustered

Gravity fits cereal trade well Gravity results

Prediction: Variance of welfare increases when β1 < 0

Endogeneity concern: Need instruments for lnAit and lnAit It



Instrumental-variables strategy
IV approach:

Drive local yields using country crop area-weighted annual temperature, Tit

Drive global spatial correlation of yields using ENSOt and ENSOt−1

Two first stage equations:

lnAit = α11f (Tit) + α12f (Tit)g(ENSOt + ENSOt−1) + Γ′1Zit + υ1it

lnAit It = α21f (Tit) + α22f (Tit)g(ENSOt + ENSOt−1) + Γ′2Zit + υ2it

f (): restricted cubic spline function (Schlenker & Roberts, ’09; Schlenker &

Lobell, ’10; Welch et al., ’10, Moore & Lobell, ’10)

g(): quadratic function

Addressing potential weak-instrument concerns:

1 Compare OLS vs. 2SLS vs. LIML estimates

2 Conduct weak-IV diagnostics

3 Conduct weak-IV robust inference

4 Bekker (1994) standard error adjustment



OLS shows no relationship
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2SLS: Higher spatial correlation lowers cov(lnλii , lnAi)
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LIML: Higher spatial correlation lowers cov(lnλii , lnAi)
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Magnitude: 2% increase in global inequality

1 std dev increase relative to historical average Moran’s I

Use reduced-form coefficients β̂0, β̂1 and ε = 8.59 (Caliendo and Parro, 2015) to

calculate pct. change in welfare variance Welfare calculation

Outcome is log domestic share of expenditure

(1) (2) (3) (4) (5)

lnAit (β0) 2.110** 2.380*** 2.114*** 2.196*** 2.308***

(0.837) (0.847) (0.604) (0.669) (0.771)

lnAit × It (β1) -4.530 -4.907 -4.144** -4.218** -4.463**

(2.752) (2.937) (1.834) (1.949) (2.194)

Pct. change in welfare variance 2.091 2.264 1.914** 1.948* 2.060*

from 1 s.d. increase in It (1.407) (1.497) (0.954) (1.035) (1.191)

Number of temperature splines in f() 2 3 4 5 6
Notes: 5452 observations. All models include country fixed effects, year fixed effects, and country linear trends

as excluded instruments. Year-clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.



Other robustness checks
Statistical assumptions

Randomization inference

Alternative std errors: clustering and Bekker (1994) LIML adjustment

Controls for time-varying trade costs

Sample split by time

Structural interpretation

Exclude large economies

ENSO anticipation, storage, and other dynamic effects

Terms of trade

Data construction

Alternative ENSO and temperature definitions

Temperature-driven yields

Domestic expenditure share construction



Inequality under future climate change



Climate change projection

2013 Climate



Climate change projection

2099 Temperature for Brazil + 2013 Climate



Climate change projection

2013 Climate



Climate change projection

2099 Climate



Agricultural productivity under climate change
1 Estimate cereal yield response function during period, t ∈ [t, t̄]:

lnAit = k(Tit) + Ψ′Xit + νit

k() a cubic spline; Xit includes country FE, year FE, country quadratic trends

2 Forecast yields to 2099 under RCP 8.5, holding everything else fixed at t̄:

l̂nAit = k̂(T̂it) + Ψ̂′Xi t̄ + ν̂i t̄

3 Obtain welfare with and without change in spatial correlation

l̂nλ
s

iit = (β̂0 + β̂1 Ît)l̂nAit + Π̂′Zi t̄ + µ̂i t̄

l̂nλ
n

iit = (β̂0 + β̂1It̄)l̂nAit + Π̂′Zi t̄ + µ̂i t̄

(Usual) caveats:

Ceteris paribus besides climate-driven agricultural productivity

No role for expectations

No other GE effects (i.e. factor reallocation, crop choice)



Estimated log cereal yield temperature relationship
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Climate-driven cereal yield variance and spatial correlation

Unconditional yield



Climate-driven welfare variance
20% larger change in global welfare inequality when including spatial effects

Welfare calculation



Cntry differences in projected welfare due to spatial effects



Cntry differences in projected welfare due to spatial effects
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Conclusions



Conclusion

Contributions

Greater spatial correlation of productivities increases global welfare inequality

Exploit global climatic phenomenon that drives global spatial correlation of

productivities

Accounting for climate change-driven rise in spatial correlation increases

end-of-century global inequality by 20%

Broader implications

Many determinants of productivity (i.e., demographics, political institutions,

natural endowments) exhibit substantial spatial correlation

Combination of theory and empirics provides framework for

quasi-experimental validation of general-equilibrium predictions



Thank you
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