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Motivation

In empirical finance there is often an interest in stochastic models
for log returns

rt = log
Pt

Pt−1
where t ∈ {0,±1, · · · }.

A few popular models are:

a) ARCH (q)

rt = E (rt |rt−1, · · · ) + V (rt |rt−1, · · · )1/2Ut

where E (rt |rt−1, · · · ) = 0 and

V (rt |rt−1, · · · ) = σ2
t = α0 + α1r

2
t−1 + · · ·+ αpr

2
t−q

with E (Ut |rt−1, · · · ) = 0, and E (U2
t |rt−1, · · · ) = 1



b) GARCH(p,q)

rt = E (rt |rt−1, · · · ) + V (rt |rt−1, · · · )1/2Ut

where E (rt |rt−1, · · · ) = 0 and

V (rt |rt−1, · · · ) = α0+α1r
2
t−1+· · ·+αpr

2
t−q +β1σ

2
t−1+· · ·+βpσ

2
t−p

with E (Ut |rt−1, · · · ) = 0, and E (U2
t |rt−1, · · · ) = 1.

I These models impose very specific functional structure on
conditional means and variances. Martins-Filho and Yao
(2006) show that this can be very costly.



Motivation

A more flexible modeling strategy is to consider a nonparametric
model

E (rt |rt−1, · · · ) = m(rt−1, · · · , rt−H ,wt.) (1)

and
V (rt |rt−1, · · · ) = h(rt−1, · · · , rt−H ,wt.) (2)

where m, h belong to suitably defined classes of functions.
Whatever model is used, their location-scale structure allows us to
write, for a ∈ (0, 1)

qrt |rt−1,···(a) = E (rt |rt−1, · · · , rt−H ,wt.)

+V (rt |rt−1, · · · , rt−H ,wt.)
1/2q(a)



Model

For simplicity, we put Xt. = (rt−1, rt−2, · · · , rt−H ,wt.) a
d = H + K -dimensional vector and assume that

m(Xt.) = m0 +
d∑

a=1

ma(Xta) (3)

and

h(Xt.) = h0 +
d∑

a=1

ha(Xta) (4)

and write

rt = m0 +
d∑

a=1

ma(Xta) +

(
h0 +

d∑
a=1

ha(Xta)

)1/2

Ut (5)



Model

I Ut has distribution F (u) which is strictly increasing and
belongs to the domain of attraction of an extremal
distribution [Resnick(1987)]

I There are F ’s that are not in the domain of attraction of E
[see Leadbetter et al. (1983)] but they constitute rather
pathological examples.

We can write

qrt |Xt
(a) = m0 +

d∑
a=1

ma(Xta) +

(
h0 +

d∑
a=1

ha(Xta)

)1/2

q(a) (6)



The model

There are three unknown functionals in (6):

I If Ut were observed q(a) could be estimated from a random
sample {Ut}nt=1

Since we do not observe Ut , a natural alternative is to produce an
estimator for q(a) based on

Ût =
Yt − m̂(Xt.)

ĥ(Xt.)
for i = 1, · · · , n. (7)

where m̂ and ĥ are estimators of m and h.



An interesting case

I We are particularly interested in the case where a is very large
(in the vicinity of 1), called high order (conditional) quantiles

I These conditional quantiles have become particularly
important in empirical finance where they are called
conditional Value-at-Risk (CVaR) [see, inter alia, McNeil and
Frey (2000), Martins-Filho and Yao (2006), Cai (2008)]

I Interestingly, the restriction that a is in a neighborhood of 1 is
useful in estimation. The result is due to Pickands (1975).

He showed that F (x) ∈ D(E ) is equivalent, for some fixed k and
function σ(ξ), to

limξ→u∞sup0<u<u∞−ξ |Fµ(u)− G (u;σ(ξ), k)| = 0 (8)

where



An interesting case

I Fξ(u) = F (u+ξ)−F (ξ)
1−F (ξ)

I u∞ = l .u.b{x : F (x) < 1} ≤ ∞ with u∞ > µ ∈ <
I G is a generalized Pareto distribution, i.e.,

G (y ;σ, k) =

{
1− (1− ky/σ)1/k if k 6= 0, σ > 0

1− exp(−y/σ) if k = 0, σ > 0
(9)

with 0 < y <∞ if k < 0 and 0 < y < σ/k if k > 0.

Comments:

I If F belongs to the domain of attraction of a Fréchet
distribution (Φα) with parameter α, then k = − 1

α and
σ(ξ) = ξ/α.

I By (8) G is a suitable parametric approximation for the upper
tail of F , an estimator for q(a) can be obtained from the
estimation of the parameters k and σ(ξ)!!



Estimation

Let {Û(t)}nt=1 and Zj = Û(n−N+j) − Û(n−N) for j = 1, · · · ,N where

Ût =
Yt − m̂(Xt.)

ĥ(Xt.)

for t = 1, · · · , n. We define the B-spline estimator for m evaluated
at x = (x1, · · · , xd) as

m̂(x) = λ̂0 +
d∑

a=1

Nn∑
j=1

λ̂j ,aIj ,a(xa) (10)

where

(λ̂0, λ̂11, · · · , λ̂Nnd) = argmin
<dNn+1

n∑
t=1

rt − λ0 −
d∑

a=1

Nn∑
j=1

λj ,aIj ,a(Xta)

2

.

(11)



Estimation

The λ̂ja are used to construct pilot estimators for each component
ma(xa), which are defined as

m̂a(xa) =
Nn∑
j=1

λ̂j ,aIj ,a(xa)− 1

n

n∑
t=1

Nn∑
j=1

λ̂j ,aIj ,a(Xta) (12)

and

m̂0 = λ̂0 +
1

n

d∑
a=1

n∑
t=1

Nn∑
j=1

λ̂j ,aIj ,a(Xta). (13)



Estimation

These pilot estimators, together with ĉ = 1
n

∑n
t=1 rt are used to

construct pseudo-responses

r̂ta = rt − ĉ −
d∑

α=1,α 6=a

m̂α(Xtα). (14)

We then form d sequences {(r̂ta,Xta)}nt=1 which are used to
estimate ma via an univariate nonparametric regression smoother.
The simplest is a Nadaraya-Watson kernel estimator, i.e.,

m̂∗a(xa) =

∑n
t=1 K

(
Xta−xa

hn

)
r̂ta∑n

t=1 K
(

Xta−xa
hn

) (15)

where K (·) is a kernel function and hn is a bandwidth such that
hn ∝ n−1/5. The same procedure is used for the estimation of h,
using as regressand (rt − m̂(Xt.))2.



Estimation

Order statistics are estimators for a quantiles associated with
empirical distributions. That is,

qn(a) =

{
U(na) if na ∈ N

U([na]+1) if na /∈ N

and for an = 1− N
n we can write

{Zj}Nj=1 =
{
U(n−N+j) − qn (an)

}N

j=1
.



Estimation of GPD parameters

1. First stage

Inspired by Azzalini (1981), Falk (1985) and Martins-Filho and Yao
(2007) we define q̃(z) as the solution for

F̃ (q̃(z)) = z

where F̃ (u) =
∫ u
−∞

1
nh2n

∑n
i=1 K2

(
Ûi−y
h2n

)
dy , K2(·) is a kernel

function and 0 < h2n is a bandwidth.

Now we can define the observed sequence

{Z̃j}Nj=1 =
{

Û(n−N+j) − q̃(an)
}N

j=1



Estimation of GPD parameters

2. Second stage:

We consider a solution (σ̃N , k̃) for the following likelihood
equations:

∂

∂σ

1

N

N∑
j=1

log g(Z̃j ; σ̃N , k̃) = 0 (16)

∂

∂k

1

N

N∑
j=1

log g(Z̃j ; σ̃N , k̃) = 0. (17)

where g(z ;σ, k) = 1
σ

(
1− kz

σ

)1/k−1



Estimation of q(a)
Given a threshold ξ = U(n−N) we can write

FU(n−N)
(y) =

F (y + U(n−N))− F (U(n−N))

1− F (U(n−N))
≈ 1−

(
1− ky

σN

)1/k

For a ∈ (0, 1) we can write that

q(a) = U(n−N) + yN,a

where F (U(n−N) + yN,a) = a. If 1− F (U(n−N)) is estimated by
N/n, we have

1− a

N/n
≈
(

1− ky

σN

)1/k

, (18)

which suggests yN,a ≈ σN
k

(
1−

(
(1−a)n

N

)k
)

. We define

q̂(a) = q̃(an) + ŷN,a = q̃(an) +
σ̃N

k̃

(
1−

(
(1− a)n

N

)k̃
)
. (19)



Estimation of qrt |Xt.
(a)

Lastly, we combine the q̂(a) with m̂(x) to obtain,

q̂rt |Xt.
(a) = m̂(Xt.) + ĥ(Xt.)

1/2q̂(a)

the estimator for qrt |X=x(a).


