Food Price Shocks and Poverty: The Left Hand Side

James E. Foster

The George Washington University and OPHI Oxford

Washington, DC, September 302011

Motivation

- Why Policy Concern?
\square Indeed: prices change all the time
- People substitute when they can, and experience changes in real income when they can't
\square Where is the policy issue?

Motivation

- Large Changes in Food Prices
- Can have large absolute effect on real incomes and poverty
- Poor and near poor are vulnerable since budget share on food is high
- Compounding deprivation with more deprivation
- Mitigating factors: Supplier of food or employed in sector
- Traditional poverty measures

Motivation

- Large Changes in Food Prices
- Can also have direct effects on food consumption and nutrition (and on capability of avoiding malnutrition)
- Irreversible effects, especially on children
- In extreme cases, irreversible effects on all
- A multidimensional proposal

Motivation

- Large Changes in Food Prices
\square Can also affect other consumption/investment and key development indicators
- Enrollment and education of children
- Assets
- Recovery possible but difficult
- MPI?

Outline

- Income Poverty
- Food Poverty
- Multiple Dimensions
- Discussion

Price Shocks and Income Poverty

- Measuring the impacts
- In terms of real incomes and poverty
- Convert price change into income change via CV
- Adjust nominal income
- Determine poverty status
- Aggregate via, say, FGT
- Examples
- Chico, Ivanic et al (2011)

Review: Income Poverty

Framework
Goal

Variable
Identification
Aggregation

- Sen 1976 identification and aggregation
- Poverty measure P(.)
- income
- poverty line
- Foster-Greer-Thorbecke 1984
see also Foster, Greer, and Thorbecke 2010

Review: Income Poverty

Example Incomes $y=(7,3,4,8)$ Poverty line $z=5$

Deprivation vector $\mathbf{g}^{0}=(0,1,1,0)$
Headcount ratio $\mathrm{P}_{0}=\mu \quad\left(\mathrm{g}^{0}\right)=2 / 4$
prevalence
Normalized gap vector $\mathrm{g}^{1}=(0,2 / 5,1 / 5,0)$
Poverty gap $=P_{1}=\mu\left(g^{1}\right)=3 / 20 \quad$ depth
Squared gap vector $\mathrm{g}^{2}=(0,4 / 25,1 / 25,0)$
FGT Measure $=P_{2}=\mu\left(\mathrm{g}^{2}\right)=5 / 100 \quad$ severity
Decomposable across population groups
Region
Ultrapoor

Price Shocks and Income Poverty

- Pros
- Income poverty is salient concept
- Powerful technology for prediction and evaluation
- Micro theory based
- Respects preferences

Price Shocks and Income Poverty

- Cons

- Base price matters
- Utility/price indices not data, yet crucial
- especially when relative prices are very different
- (not as important if relative prices only change a little)
- Surely utility function varies across persons.
- adjusted income distribution not known
- uncertain poverty levels
- Resource poverty - "what could be" not "what is"
- decomposition by expenditure type

Price Shocks and Food Poverty

- Measuring the impacts
- In terms of food consumption and food poverty
- Quantity index, caloric content, or anthropomorphic measures
- Aggregate via FGT
- our original paper used calories not income to evaluate food poverty in Kenya
- other unidimensional variables possible
- Examples
- Gundersen (2008)

Price Shocks and Food Poverty

- Pros
- Focus on key policy variable
- Particularly useful for surveillance
- Measures "what is"

Price Shocks and Food Poverty

- Cons

- Nutrition is multidimensional (Joachim von Braun)
- Ex: Calories, protein, iron, vitamin A, etc
- Incommensurate and limited substitutability
- aggregating achievements may make no sense
- however, monitoring aggregate deprivations could make sense

Question

- Can the FGT food poverty index be generalized to obtain a multidimensional index of food poverty?
- Idea: Apply methods based on Alkire Foster J Pub E 2011 "Counting and Multidimensional Poverty Measurement"

Overview of this Approach

Identification - Dual cutoffs

Deprivation cutoffs - each deprivation counts
Poverty cutoff - in terms of breadth of deprivation

Aggregation - Adjusted FGT

Reduces to FGT in single variable case

Background papers

Alkire and Foster "Counting and Multidimensional Poverty
Measurement" forthcoming Journal of Public Economics
Alkire and Santos "Acute Multidimensional Poverty: A new Index for Developing Countries" OPHI WP 38, background for HDR 2010
Alkire and Foster "Understandings and Misunderstandings of
Multidimensional Poverty Measurement" Journal of Economic Inequality

Multidimensional Data

Matrix of achievements for n persons in d domains

Multidimensional Data

Matrix of achievements for n persons in d domains

Domains

$$
y=\left[\begin{array}{cccc}
13.1 & 14 & 4 & 1 \\
15.2 & 7 & 5 & 0 \\
12.5 & 10 & 1 & 0 \\
20 & 11 & 3 & 1
\end{array}\right] \quad \text { Persons }
$$

Multidimensional Data

Matrix of achievements for n persons in d domains

Domains
$y=\left[\begin{array}{cccc}13.1 & 14 & 4 & 1 \\ 15.2 & 7 & 5 & 0 \\ 12.5 & 10 & 1 & 0 \\ 20 & 11 & 3 & 1\end{array}\right] \quad$ Persons
$z \quad\left(\begin{array}{llll}13 & 12 & 3 & 1\end{array}\right) \quad$ Cutoffs

Multidimensional Data

Matrix of achievements for n persons in d domains

> Domains
> $\left.\boldsymbol{y}=\left\lvert\, \begin{array}{cccc}\mathbf{1 3 . 1} & \mathbf{1 4} & \mathbf{4} & \mathbf{1} \\ \mathbf{1 5 . 2} & \underline{\mathbf{7}} & \mathbf{5} & \underline{\mathbf{0}} \\ \frac{\mathbf{1 2 . 5}}{\mathbf{2 0}} & \underline{10} & \underline{1} & \underline{\mathbf{0}} \\ \mathbf{1 1} & \mathbf{3} & \mathbf{1}\end{array}\right.\right]$
> $\boldsymbol{z} \quad\left(\begin{array}{llll}\mathbf{1 3} & \mathbf{1 2} & \mathbf{3} & \mathbf{1}\end{array}\right)$ Cutoffs

These entries fall below cutoffs

Deprivation Matrix

Replace entries: 1 if deprived, 0 if not deprived

$$
\boldsymbol{y}=\left|\begin{array}{cccc}
\text { Domains } \\
\mathbf{1 3 . 1} & \mathbf{1 4} & \mathbf{4} & \mathbf{1} \\
\underline{15.2} & \underline{7} & 5 & \underline{\mathbf{1}} \\
\frac{120}{20} & \underline{10} & \underline{1} & \underline{\mathbf{0}} \\
\mathbf{3} & 1
\end{array}\right| \text { Persons }
$$

Deprivation Matrix

Replace entries: 1 if deprived, 0 if not deprived

$$
\boldsymbol{g}^{\mathbf{0}}=\left|\begin{array}{llll}
\boldsymbol{0} & \text { Domains } \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\boldsymbol{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0}
\end{array}\right| \quad \text { Persons }
$$

Normalized Gap Matrix

Matrix of achievements for n persons in d domains

> Domains
> $\left.\boldsymbol{y}=\left\lvert\, \begin{array}{cccc}\mathbf{1 3 . 1} & \mathbf{1 4} & \mathbf{4} & \mathbf{1} \\ \mathbf{1 5 . 2} & \underline{\mathbf{7}} & \mathbf{5} & \underline{\mathbf{0}} \\ \frac{\mathbf{1 2 . 5}}{\mathbf{2 0}} & \underline{10} & \underline{1} & \underline{\mathbf{0}} \\ \mathbf{1 1} & 3 & \mathbf{1}\end{array}\right.\right]$
> $\boldsymbol{z} \quad\left(\begin{array}{llll}\mathbf{1 3} & \mathbf{1 2} & \mathbf{3} & \mathbf{1}\end{array}\right) \quad$ Cutoffs

These entries fall below cutoffs

Normalized Gap Matrix

Normalized gap $=\left(z_{\mathrm{j}}-\mathrm{y}_{\mathrm{j} \mathrm{i}}\right) / \mathrm{z}_{\mathrm{j}}$ if deprived, 0 if not deprived

$$
\begin{aligned}
& \text { Domains } \\
& y=\left[\begin{array}{cccc}
13.1 & 14 & 4 & 1 \\
15.2 & \underline{7} & 5 & \underline{0} \\
\frac{12.5}{20} & \underline{10} & \underline{1} & \underline{0} \\
\underline{11} & 3 & 1
\end{array}\right] \quad \text { Persons } \\
& \boldsymbol{z} \quad\left(\begin{array}{llll}
13 & 12 & 3 & 1
\end{array}\right) \quad \text { Cutoffs }
\end{aligned}
$$

These entries fall below cutoffs

Normalized Gap Matrix

Normalized gap $=\left(z_{\mathrm{j}}-\mathrm{y}_{\mathrm{j} \mathrm{i}}\right) / \mathrm{z}_{\mathrm{j}}$ if deprived, 0 if not deprived

$$
\boldsymbol{g}^{\mathbf{1}}=\left[\begin{array}{cccc}
\boldsymbol{c} & \text { Domains } \\
\mathbf{0} & \boldsymbol{0} & \boldsymbol{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0 . 4 2} & \boldsymbol{0} & \mathbf{1} \\
\mathbf{0 . 0 4} & \mathbf{0 . 1 7} & \mathbf{0 . 6 7} & \mathbf{1} \\
\mathbf{0} & \mathbf{0 . 0 8} & \mathbf{0} & \mathbf{0}
\end{array}\right] \text { Persons }
$$

Squared Gap Matrix

Squared gap $=\left[\left(\mathrm{z}_{\mathrm{j}}-\mathrm{y}_{\mathrm{j} i}\right) / \mathrm{z}_{\mathrm{j}}\right]^{2}$ if deprived, 0 if not deprived

$$
\left.\boldsymbol{g}^{\mathbf{1}}=\left\lvert\,\right.\right] \text { Persons }
$$

Squared Gap Matrix

Squared gap $=\left[\left(\mathrm{z}_{\mathrm{j}}-\mathrm{y}_{\mathrm{j} i}\right) / \mathrm{z}_{\mathrm{j}}\right]^{2}$ if deprived, 0 if not deprived

$$
\boldsymbol{g}^{\mathbf{2}}=\left[\begin{array}{cccc}
\boldsymbol{0} & \text { Domains } \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0 . 0 0 2} & \mathbf{0 . 0 2 9} & \mathbf{0} .449 & \mathbf{1} \\
\mathbf{0} & \mathbf{0 . 0 0 6} & \mathbf{0} & \mathbf{0}
\end{array}\right] \text { Persons }
$$

Identification

$$
\boldsymbol{g}^{\mathbf{0}}=\left|\right| \quad \text { Persons }
$$

Matrix of deprivations

Identification - Counting Deprivations

$$
\boldsymbol{g}^{\mathbf{0}}=\left|\right| \begin{array}{lll}
\mathbf{0} & \mathbf{2} & \\
\text { P } & & \\
\mathbf{1} &
\end{array}
$$

Identification - Counting Deprivations

$\mathrm{Q} /$ Who is poor?

$$
\boldsymbol{g}^{\mathbf{0}}=\left|\begin{array}{llll}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0}
\end{array}\right| \begin{array}{lll}
\mathbf{0} & & \\
\mathbf{2} & & \text { Persons } \\
\mathbf{4} & \\
\mathbf{1} &
\end{array}
$$

Identification - Union Approach

Q/ Who is poor?
A1/ Poor if deprived in any dimension $c_{i} \geq 1$

$$
\boldsymbol{g}^{\mathbf{0}}=\left[\left. \right\rvert\, \begin{array}{lll}
\mathbf{0} & \mathbf{2} & \\
\mathbf{4} & \text { Persons } \\
\mathbf{1} &
\end{array}\right.
$$

Identification - Union Approach

Q/ Who is poor?
A1/ Poor if deprived in any dimension $c_{i} \geq 1$

$$
\boldsymbol{g}^{\mathbf{0}}=\left[\left. \right\rvert\, \begin{array}{lll}
\mathbf{0} & \underline{\mathbf{2}} & \\
\underline{\mathbf{1}} & & \\
\text { Persons }
\end{array}\right.
$$

Identification - Intersection Approach

Q/ Who is poor?
A2/ Poor if deprived in all dimensions $c_{i}=d$

$$
\boldsymbol{g}^{\mathbf{0}}=\left|\right| \begin{array}{lll}
\mathbf{0} & \mathbf{2} & \\
\mathbf{4} & \text { Persons } \\
\mathbf{1} &
\end{array}
$$

Identification - Dual Cutoff Approach

Q/ Who is poor?
A/ Fix cutoff k, identify as poor if $\mathbf{c}_{\mathbf{i}} \geq \mathbf{k}$

$$
\boldsymbol{g}^{\mathbf{0}}=\left|\right| \begin{array}{lll}
\mathbf{0} & \mathbf{2} & \\
\mathbf{4} & \text { Persons } \\
\mathbf{1} &
\end{array}
$$

Identification - Dual Cutoff Approach

Q/ Who is poor?
A/ Fix cutoff k, identify as poor if $\mathbf{c}_{\mathbf{i}} \geq \mathbf{k}(\mathbf{E x}: \mathbf{k}=2)$

$$
\boldsymbol{g}^{\mathbf{0}}=\left|\right| \begin{array}{lll}
\mathbf{0} & \underline{\mathbf{2}} & \\
\text { Persons } & \mathbf{1} &
\end{array}
$$

Identification - Dual Cutoff Approach

Q/ Who is poor?
A/ Fix cutoff k, identify as poor if $\mathbf{c}_{\mathbf{i}} \geq \mathbf{k}(\mathrm{Ex}: \mathbf{k}=2)$

$$
\boldsymbol{g}^{\mathbf{0}}=\left[\right] \quad \underline{\mathbf{0}} \quad \begin{aligned}
& \underline{\mathbf{4}} \\
& \text { Persons } \\
& \mathbf{1}
\end{aligned}
$$

Note
Includes both union and intersection

Identification - Dual Cutoff Approach

Q/ Who is poor?
A/ Fix cutoff k, identify as poor if $\mathbf{c}_{\mathbf{i}} \geq \mathbf{k}(\mathrm{Ex}: \mathbf{k}=2)$

$$
\boldsymbol{g}^{\mathbf{0}}=\left[\left. \right\rvert\, \begin{array}{lll}
\mathbf{0} & \underline{\mathbf{2}} & \\
\hline \mathbf{1} & \text { Persons }
\end{array}\right.
$$

Note
Includes both union and intersection
Especially useful when number of dimensions is large Union becomes too large, intersection too small

Identification - Dual Cutoff Approach

Q/ Who is poor?
A/ Fix cutoff k, identify as poor if $\mathbf{c}_{\mathbf{i}} \geq \mathbf{k}(\mathrm{Ex}: \mathbf{k}=2)$

$$
\boldsymbol{g}^{\mathbf{0}}=\left|\right| \begin{array}{lll}
\mathbf{0} & \underline{\mathbf{2}} & \\
\text { Persons } & \mathbf{1} &
\end{array}
$$

Note
Includes both union and intersection
Especially useful when number of dimensions is large
Union becomes too large, intersection too small
Next step - aggregate into an overall measure of poverty

Aggregation

$$
\boldsymbol{g}^{\mathbf{0}}=\left|\right| \begin{array}{lll}
\mathbf{0} & \underline{\mathbf{4}} & \\
\text { Persons } & \mathbf{1} &
\end{array}
$$

Aggregation

Censor data of nonpoor

$$
\boldsymbol{g}^{\mathbf{0}}=\left|\right| \begin{aligned}
& \underline{\mathbf{2}} \\
& \text { Persons } \\
& \mathbf{1}
\end{aligned}
$$

Aggregation

Censor data of nonpoor

$$
\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left[\right] \quad \begin{array}{ll}
\mathbf{0} & \underline{\mathbf{2}} \\
\text { Persons } \\
\mathbf{0} &
\end{array}
$$

Aggregation

Censor data of nonpoor

$$
\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left[\right] \quad \begin{array}{ll}
\mathbf{0} & \underline{\mathbf{4}} \\
\text { Persons } \\
\mathbf{0} &
\end{array}
$$

Similarly for $g^{1}(k)$, etc

Aggregation - Headcount Ratio

$$
\left.\boldsymbol{g}^{\boldsymbol{0}}(\boldsymbol{k})=\left\lvert\,\right.\right] \quad \begin{array}{ll}
\mathbf{0} & \underline{\mathbf{4}} \\
\text { Persons } \\
\mathbf{0} &
\end{array}
$$

Aggregation - Headcount Ratio

$$
\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left[\right] \quad \begin{array}{ll}
\mathbf{0} & \underline{\mathbf{2}} \\
\text { Persons } \\
\mathbf{0} &
\end{array}
$$

Two poor persons out of four: $\mathbf{H}=1 / 2$ 'incidence'

Critique

Suppose the number of deprivations rises for person 2

$$
\left.\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left\lvert\,\right.\right] \quad \begin{array}{ll}
\mathbf{0} & \\
\underline{\mathbf{2}} & \\
\text { Persons } \\
\mathbf{0} &
\end{array}
$$

Two poor persons out of four: $\mathbf{H}=1 / 2$ 'incidence'

Critique

Suppose the number of deprivations rises for person 2

$\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left[\right.$| Domains | | $c(k)$ | |
| :--- | :--- | :--- | :--- |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |\(] \quad \begin{array}{ll}\mathbf{0} \&

\mathbf{2} \&

Persons

\mathbf{0} \& \end{array}\)

Two poor persons out of four: $\mathbf{H}=1 / 2$ 'incidence'

Critique

Suppose the number of deprivations rises for person 2

$$
\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left[\right] \quad \begin{array}{ll}
\mathbf{0} & \underline{\mathbf{4}} \\
\text { Persons } \\
\mathbf{0} &
\end{array}
$$

Two poor persons out of four: $\mathbf{H}=1 / 2$ 'incidence' No change!

Critique

Suppose the number of deprivations rises for person 2

$$
\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left[\right] \quad \begin{array}{ll}
\mathbf{0} & \underline{\mathbf{2}} \\
\text { Persons } \\
\mathbf{0} &
\end{array}
$$

Two poor persons out of four: $\mathbf{H}=1 / 2$ 'incidence'
No change!
Violates 'dimensional monotonicity'

Aggregation

Return to the original matrix

$$
\left.\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left\lvert\,\right.\right] \quad \begin{array}{ll}
\mathbf{0} & \underline{\mathbf{2}} \\
\text { Persons } \\
\mathbf{0} &
\end{array}
$$

Aggregation

Return to the original matrix

$$
\left.\boldsymbol{g}^{\boldsymbol{0}}(\boldsymbol{k})=\left\lvert\,\right.\right] \quad \begin{array}{ll}
\mathbf{0} & \underline{\mathbf{4}} \\
\text { Persons } & \\
\mathbf{0} &
\end{array}
$$

Aggregation

Need to augment information

$$
\left.\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left\lvert\,\right.\right] \quad \begin{array}{ll}
\mathbf{0} & \underline{\mathbf{4}} \\
\text { Persons } \\
\mathbf{0} &
\end{array}
$$

Aggregation

Need to augment information
"deprivation share"

$$
\begin{aligned}
& \text { Domains } \quad c(k) \quad c(k) / d \\
& \boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left|\begin{array}{llll}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right| \begin{array}{llll}
\boldsymbol{0} & & & \underline{\mathbf{2}} \\
\mathbf{4} & \mathbf{4} / \mathbf{4} & \text { Persons } & \\
\mathbf{0} & & \\
\end{array}
\end{aligned}
$$

Aggregation

Need to augment information
'deprivation share'
'intensity'

$$
\left.\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left\lvert\,\right.\right] \quad \mathbf{0}
$$

$\mathrm{A}=$ average intensity among poor $=3 / 4$

Aggregation - Adjusted Headcount Ratio

Adjusted Headcount Ratio $=\mathrm{M}_{0}=\mathrm{HA}$

$$
\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left|\right| \begin{array}{llll}
& \underline{\mathbf{2}} & \mathbf{2} / \mathbf{4} & \mathbf{4} / \mathbf{4} \\
\text { Persons } \\
\mathbf{0} & &
\end{array}
$$

$A=$ average intensity among poor $=3 / 4$

Aggregation - Adjusted Headcount Ratio

Adjusted Headcount Ratio $=\mathrm{M}_{0}=\mathrm{HA}=\mu\left(\mathrm{g}^{\mathbf{0}}(\mathbf{k})\right)$

$$
\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left|\right| \begin{array}{llll}
& \underline{\mathbf{2}} & \mathbf{2} / \mathbf{4} & \mathbf{4} / \mathbf{4} \\
\text { Persons } \\
\mathbf{0} & &
\end{array}
$$

$A=$ average intensity among poor $=3 / 4$

Aggregation - Adjusted Headcount Ratio

Adjusted Headcount Ratio $=\mathrm{M}_{0}=\mathrm{HA}=\boldsymbol{\mu}\left(\mathbf{g}^{\mathbf{0}}(\mathbf{k})\right)=\mathbf{6 / 1 6}=.375$

$$
\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left|\right| \begin{array}{llll}
\\
\underline{\mathbf{2}} & \mathbf{2} / \mathbf{4} & \mathbf{4} / \mathbf{4} & \text { Persons } \\
\mathbf{0} & &
\end{array}
$$

$A=$ average intensity among poor $=3 / 4$

Aggregation - Adjusted Headcount Ratio

Adjusted Headcount Ratio $=\mathrm{M}_{0}=\mathrm{HA}=\boldsymbol{\mu}\left(\mathbf{g}^{\mathbf{0}}(\mathbf{k})\right)=\mathbf{6 / 1 6}=.375$
$\mathrm{A}=$ average intensity among poor $=3 / 4$
Note: if person 2 has an additional deprivation, M_{0} rises

Aggregation - Adjusted Headcount Ratio

Adjusted Headcount Ratio $=\mathrm{M}_{0}=\mathrm{HA}=\boldsymbol{\mu}\left(\mathbf{g}^{\mathbf{0}}(\mathbf{k})\right)=\mathbf{6} / \mathbf{1 6}=.375$
$\mathrm{A}=$ average intensity among poor $=3 / 4$
Note: if person 2 has an additional deprivation, M_{0} rises
Satisfies dimensional monotonicity

Adjusted Headcount Ratio

Note
M_{0} requires only ordinal information.
Q/
What if data are cardinal?
How to incorporate information on depth of deprivation?

Aggregation: Adjusted Poverty Gap

Augment information of M_{0} using normalized gaps

$$
\left.\boldsymbol{g}^{\mathbf{1}}(\boldsymbol{k})=\left\lvert\, \begin{array}{cccc}
\boldsymbol{c} & \text { Domains } \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} .04 & \mathbf{0 . 4 2} & \mathbf{0} & \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right.\right] \text { Persons }
$$

Aggregation: Adjusted Poverty Gap

Augment information of M_{0} using normalized gaps

$$
\boldsymbol{g}^{\mathbf{1}}(\boldsymbol{k})=\left|\right| \text { Persons }
$$

Average gap across all deprived dimensions of the poor:

$$
\mathrm{G}=(0.04+0.42+0 \cdot 17+0
$$

Aggregation: Adjusted Poverty Gap

Adjusted Poverty Gap $=\mathrm{M}_{1}=\mathrm{M}_{0} \mathrm{G}=\mathrm{HAG}$

$$
\left.\boldsymbol{g}^{\mathbf{1}}(\boldsymbol{k})=\left\lvert\, \begin{array}{cccc}
\boldsymbol{0} & \text { Domains } \\
\mathbf{0} & \mathbf{0} & \boldsymbol{0} & \mathbf{0} \\
\mathbf{0 . 0 4} & \mathbf{0 . 4 2} & \mathbf{0} & \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right.\right] \text { P7 } \mathbf{1} \text { Persons }
$$

Average gap across all deprived dimensions of the poor:

$$
G=(0.04+0.42+0.17+0
$$

Aggregation: Adjusted Poverty Gap

Adjusted Poverty Gap $=\mathrm{M}_{1}=\mathrm{M}_{0} \mathrm{G}=\mathrm{HAG}=\mu\left(\mathrm{g}^{1}(\mathbf{k})\right)$

Domains

$$
\boldsymbol{g}^{1}(\boldsymbol{k})=\left|\begin{array}{cccc}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0 . 4 2} & \mathbf{0} & \mathbf{1} \\
\mathbf{0 . 0 4} & \mathbf{0 . 1 7} & \mathbf{0 . 6 7} & \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right| \text { Persons }
$$

Average gap across all deprived dimensions of the poor:

$$
\mathrm{G}=(0.04+0.42+0 \cdot 17+0
$$

Aggregation: Adjusted Poverty Gap

Adjusted Poverty Gap $=\mathrm{M}_{1}=\mathrm{M}_{0} \mathrm{G}=\mathrm{HAG}=\mu\left(\mathrm{g}^{1}(\mathbf{k})\right)$

Domains

$$
\boldsymbol{g}^{\mathbf{1}}(\boldsymbol{k})=\left[\left.\begin{array}{cccc}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0 . 4 2} & \mathbf{0} & \mathbf{1} \\
\mathbf{0 . 0 4} & \mathbf{0 . 1 7} & \mathbf{0 . 6 7} & \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array} \right\rvert\,\right. \text { Persons }
$$

Obviously, if in a deprived dimension, a poor person becomes even more deprived, then M_{1} will rise.

Aggregation: Adjusted Poverty Gap

Adjusted Poverty Gap $=\mathrm{M}_{1}=\mathrm{M}_{0} \mathrm{G}=\mathrm{HAG}=\mu\left(\mathrm{g}^{1}(\mathbf{k})\right)$

Domains

$$
\boldsymbol{g}^{\mathbf{1}}(\boldsymbol{k})=\left[\left.\begin{array}{cccc}
\mathbf{0} & \boldsymbol{0} & \boldsymbol{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0 . 4 2} & \boldsymbol{0} & \mathbf{1} \\
\mathbf{0 . 0 4} & \mathbf{0 . 1 7} & \mathbf{0 . 6 7} & \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array} \right\rvert\,\right. \text { Persons }
$$

Obviously, if in a deprived dimension, a poor person becomes even more deprived, then M_{1} will rise.

Satisfies monotonicity - reflects incidence, intensity, depth

Aggregation: Adjusted FGT

Consider the matrix of squared gaps

Domains

$$
\boldsymbol{g}^{\mathbf{1}}(\boldsymbol{k})=\left[\begin{array}{cccc}
\boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0 . 4 2} & \boldsymbol{0} & \mathbf{1} \\
\mathbf{0 . 0 4} & \mathbf{0 . 1 7} & \mathbf{0 . 6 7} & \mathbf{1} \\
\mathbf{0} & \boldsymbol{0} & \boldsymbol{0} & \mathbf{0}
\end{array}\right] \text { Persons }
$$

Aggregation: Adjusted FGT

Consider the matrix of squared gaps

Domains

$$
\boldsymbol{g}^{2}(\boldsymbol{k})=\left|\begin{array}{cccc}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0 4 2}^{2} & \mathbf{0} & \mathbf{1}^{2} \\
\mathbf{0 0 4} & \mathbf{0 1 7}^{2} & \mathbf{0 6 7 ^ { 2 }} & \mathbf{1}^{2} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right| \text { Persons }
$$

Aggregation: Adjusted FGT
Adjusted FGT is $\mathrm{M}_{2}=\mu\left(\mathrm{g}^{2}(\mathrm{k})\right)$

$$
\left.\boldsymbol{g}^{2}(\boldsymbol{k})=\left\lvert\, \begin{array}{cccc}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0 4 2}^{2} & \mathbf{0} & \mathbf{1}^{2} \\
\mathbf{0 0 4} & \mathbf{0 1 7}^{2} & \mathbf{0 6 7}^{\mathbf{2}} & \mathbf{1}^{\mathbf{2}} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right.\right] \text { Persons }
$$

Aggregation: Adjusted FGT

Adjusted FGT is $\mathrm{M}_{2}=\mu\left(\mathrm{g}^{2}(\mathbf{k})\right)$

$$
\left.\boldsymbol{g}^{2}(\boldsymbol{k})=\left\lvert\, \begin{array}{cccc}
\boldsymbol{0} & \text { Domains } \\
\mathbf{0} & \mathbf{0} 4 \mathbf{2}^{\mathbf{2}} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} \mathbf{1 4}^{\mathbf{2}} & \mathbf{0 1 7}^{2} & \mathbf{0 6 7 ^ { 2 }} & \mathbf{1}^{2} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right.\right] \text { Persons }
$$

Satisfies transfer axiom

- reflects incidence, intensity, depth, severity
- focuses on most deprived

Overview

Concept - Poverty as multiple deprivation Mirrors identification used by NGOs - BRAC Depends on joint distribution
Transparent
Can be implemented at any level
Cross country - MPI in the 2010 HDR
Includes: Nutrition, enrollment, assets
Within country - Mexico*, Colombia, Bhutan, etc.
Local village level - Participatory methods India, Bhutan, etc
Evaluation - Impacts on poverty

Proposal

- Multidimensional measure of food poverty
- Dimensions and indicators
- Deprivation cutoffs
- Weights
- Poverty cutoff
- Pros
- All pieces on the table
- Robust to cutoffs
- Readily linked to existing poverty methods
- Limited substitution natural in this context
- Cons

Food Price Shocks and the MPI?

Other Issues

- Chronic and Transient Effects
- Substitution
- Quantity, quality, time
- Ultrapoor
- Intra-Household Impacts
- Just in Time Data and Forecasting
- Endogenous Policies
- Parameter Insurance?

Thank you

Illustration: USA

Data Source: National Health Interview Survey, 2004, United States Department of Health and Human Services. National Center for Health Statistics - ICPSR 4349.

Tables Generated By: Suman Seth.

Unit of Analysis: Individual.
Number of Observations: 46009.

Variables:

(1) income measured in poverty line increments and grouped into 15 categories
(2) self-reported health
(3) health insurance
(4) years of schooling.

Illustration: USA

Profile of US Poverty by Ethnic/Racial Group

Illustration: USA

Profile of US Poverty by Ethnic/Racial Group

1	2	3

Group Population | Percentage |
| :---: |
| Contrib. |

Hispanic	9100	19.8%
White	29184	63.6%
African		
American	5742	12.5%
Others	1858	4.1%
Total	$\mathbf{4 5 8 8 4}$	$\mathbf{1 0 0 . 0 \%}$

Illustration: USA

Profile of US Poverty by Ethnic/Racial Group

$\left.\begin{array}{ccccc}\mathbf{1} & \mathbf{2} & \begin{array}{c}3 \\ \text { Proup }\end{array} & \begin{array}{c}\mathbf{4} \\ \text { Population } \\ \text { Percentage } \\ \text { Contrib. }\end{array} & \begin{array}{c}\text { Income } \\ \text { Poverty } \\ \text { Headcount }\end{array}\end{array} \begin{array}{c}\text { Percentage } \\ \text { Contrib. }\end{array}\right\}$

Illustration: USA

Profile of US Poverty by Ethnic/Racial Group

1	4 Income Poverty Headcount	5 Percentage Contrib.
Hispanic	0.23	37.5%
White	0.07	39.1%
African		
American Others	0.19	20.0%
Total	0.10	3.5%
	$\mathbf{0 . 1 2}$	$\mathbf{1 0 0 . 0 \%}$

Illustration: USA

Profile of US Poverty by Ethnic/Racial Group

$\mathbf{1}$	$\mathbf{4}$ Income Poverty	$\mathbf{5}$ Geroup Peadcount Contrib.	\boldsymbol{H}	6 Percentage Contrib.
Hispanic White	0.23	37.5%	0.39	46.6%
African	0.07	39.1%	0.09	34.4%
American	0.19	20.0%	0.21	16.0%
Others	0.10	3.5%	0.12	3.0%
Total	$\mathbf{0 . 1 2}$	$\mathbf{1 0 0 . 0 \%}$	$\mathbf{0 . 1 6}$	$\mathbf{1 0 0 . 0 \%}$

Illustration: USA

Profile of US Poverty by Ethnic/Racial Group

1	4 Income Poverty Headcount	5 Percentage Contrib.	\boldsymbol{M}_{θ}	9 Percentage Contrib.
Hispanic	0.23	37.5%	0.229	47.8%
White	0.07	39.1%	0.050	33.3%
African	0.19	20.0%	0.122	16.1%
American	0.19	3.5%	0.067	2.8%
Others	0.10	$\mathbf{1 0 0 . 0 \%}$	$\mathbf{0 . 0 9}$	$\mathbf{1 0 0 . 0 \%}$
Total	$\mathbf{0 . 1 2}$	$\mathbf{1 2} \%$		

Illustration: USA

1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Ethnicity	$\boldsymbol{H}_{\mathbf{1}}$ Income	$\boldsymbol{H}_{\mathbf{2}}$ Health	\boldsymbol{H}_{3} H. Insurance	$\boldsymbol{H}_{\mathbf{4}}$ Schooling	$\boldsymbol{M}_{\mathbf{0}}$
Hispanic	0.200	0.116	0.274	0.324	0.229
Percentage Contribution	21.8%	12.7%	30.0%	35.5%	100%
White	0.045	0.053	0.043	0.057	0.050
Percentage Contribution	22.9%	26.9%	21.5%	28.7%	100%
Black	0.142	0.112	0.095	0.138	0.122
Percentage Contribution	29.1%	23.0%	19.5%	28.4%	100%
Others	0.065	0.053	0.071	0.078	0.067
Percentage Contribution	24.2%	20.0%	26.5%	29.3%	100%

Illustration: MPI

MPI and Traditional Headcount Ratios

Weights

Weighted identification

Weight on first dimension (say income): 2
Weight on other three dimensions: $2 / 3$
Cutoff k = 2
Poor if income poor, or suffer three or more deprivations
Cutoff $\mathrm{k}=2.5$ (or make inequality strict)
Poor if income poor and suffer one or more other deprivations
Nolan, Brian and Christopher T. Whelan, Resources,
Deprivation and Poverty, 1996
Weighted aggregation
Weighted intensity - otherwise same

Caveats and Observations

Identification

No tradeoffs across dimensions
Can't eat a house
Measuring "what is" rather than "what could be"
Fundamentally multidimensional each deprivation matters
Need to set deprivation cutoffs
Need to set weights select dimensions
Need to set poverty cutoff across dimension
Lots of parts: Robustness?

Sub-Sahara Africa: Robustness Across k

Burkina is always poorer than Guinea, regardless of whether we count as poor persons who are deprived in only one kind of assets (0.25) or every dimension (assets, health, education, and empowerment, in this example). (DHS Data used)

Batana, 2008- OPHI WP 13
Figure 3: M0 as cutoff k is varied in the five countries

Caveats and Observations

Aggregation

Neutral
Ignores coupling of disadvantages
Not substitutes, not complements
Discontinuities
More frequent, less abrupt

Advantages

Intuitive

Transparent
Flexible
MPI - Acute poverty
Country Specific Measures
Policy impact and good governance
Targeting
Accounting structure for evaluating policies
Participatory tool

Understandings and Misunderstandings

Data Requirements: Single survey sourcing
Depends on joint distribution, need information on joint dist.
Q: What if "best available data" are in different datasets?
A: Not best available data
Ex: Elasticity exercise with best available price data from one source and best available quantity data from another
Ex: Unlinked expenditure surveys

Understandings and Misunderstandings

Adjusted Headcount Ratio vs. MPI vs. HDI

Adjusted headcount ratio M_{0} - general methodology
MPI - a specific implementation for cross-country comparisons
HDI - not a poverty measure

Understandings and Misunderstandings

Underpinnings: Poverty and Welfare

Firmly rooted in axiomatic poverty analysis
Evaluate methods via axioms satisfied and violated
MPI - a specific implementation
Adjusted headcount ratio
crude (like unidimensional headcount ratio)
not directly linked to welfare (ditto)
conveys tangible information
transparent parameters

Understandings and Misunderstandings

Calibration: Who chooses the parameters?

See country studies
Context dependent

Revisit Objectives

- Desiderata
- It must understandable and easy to describe
- It must conform to a common sense notion of poverty
- It must fit the purpose for which it is being developed
- It must be technically solid
- It must be operationally viable
- It must be easily replicable
- What do you think?

Thank you

Poverty Measurement

Framework

- Sen 1976 identification and aggregation

Goals - Who is poor? targeting

- How much poverty? in any population

Poverty Measurement

Suppose
Single variable - calories, income or aggregate expend.
Unidimensional methods
Identification - poverty line
Aggregation - Foster-Greer-Thorbecke 1984, 2010
Note
Decomposability
Robustness

Poverty Measurement

Suppose
Many variables How to measure poverty?

Answer
If variables can be meaningfully aggregated into some overall resource or achievement variable can use unidimensional methods

Poverty Measurement

Examples
Welfare aggregation
Construct each person's welfare function
Set cutoff and apply unidimensional poverty index
Many assumptions needed
Alkire and Foster (2010) "Designing the InequalityAdjusted

Human Development Index"
Ordinal variables problematic

Poverty Measurement

Examples
Price aggregation
Construct each person's expenditure level
Set cutoff and apply unidimensional poverty index
Many assumptions needed
Ordinal and nonmarket variables problematic Link to welfare tenuous (local and unidirectional)

Poverty Measurement

Suppose
Many variables that cannot be meaningfully
aggregated into some overall resource or achievement variable. How to measure poverty?
Answers?
Blinders Limit consideration to a subset that can be aggregated, and use unidimensional methods.

Key dimensions ignored
Marginal methods Apply unidimensional methods separately to one or more variables in turn.

Inadequate identification. Ignores joint distribution.

Hypothetical Challenge

- A government would like to create an official multidimensional poverty indicator
- Desiderata
- It must understandable and easy to describe
- It must conform to a common sense notion of poverty
- It must fit the purpose for which it is being developed
- It must be technically solid
- It must be operationally viable
- It must be easily replicable
- What would you advise?

Not So Hypothetical

- 2006 Mexico
- Law: must alter official poverty methods
- Include six other dimensions
- education, dwelling space, dwelling services, access to food, access to health services, access to social security
- 2007 Oxford
- Alkire and Foster "Counting and Multidimensional Poverty Measurement"
- 2009 Mexico
- Announces official methodology; Ricardo Aparicio will discuss

Continued Interest

- 2008 Bhutan
- Gross National Happiness Index
- 2010 Chile
- Conference (May)
- 2010 London
- Release of MPI by UNDP and OPHI (July)
- 2010-11 Colombia
- Conference; Roberto Angulo will discuss
- 2008- OPHI and GW
- Workshops: Missing dimensions; Weights; Country applications; Other measures; Targeting; Robustness; Rights/poverty; Ultrapoverty
- Training: 40 officials from 28 countries
- 2009-11 Washington DC
- World Bank (several), IDB (several), USAID, CGD, OECD

Price Shocks and Income Poverty

- Pros
- Income poverty is salient concept
- Powerful technology for prediction and evaluation
- Micro theory based
- Respects preferences

